precision observables of compositeness
play

Precision observables of compositeness Roman Pasechnik Dept. of - PowerPoint PPT Presentation

Precision observables of compositeness Roman Pasechnik Dept. of Astronomy and Theoretical physics, Lund University HP2, September 5 th , 2014 Dynamical electroweak symmetry breaking Many attractive features EWSB is triggered by a


  1. 
 Precision observables of compositeness Roman Pasechnik Dept. of Astronomy and Theoretical physics, 
 Lund University HP2, September 5 th , 2014

  2. Dynamical electroweak symmetry breaking Many attractive features ✓ EWSB is triggered by a new strongly-coupled dynamics more than one confinement scale in Nature? Higgs mechanism is effective? � ✓ No fundamental scalars 
 composite Higgs? Higgs “partners”? � ✓ No hierarchy problem, no fine-tuning a best alternative to SUSY with fewer free parameters? � ✓ A plenty of new hadron-like objects, difficult to find/treat though composite Dark Matter? LHC phenomenology? ..etc Evolutions of DEWSB ideas/realizations Technicolor Extended TC Walking TC Bosonic TC Composite Higgs EFT’s Hill & Simmons, Phys. Rept. 381, 235 (2003) Sannino, Acta Phys. Polon. B40, 3533 (2009), etc e.g. MCHM SO(5)/SO(4) ??? No consistent UV completion has yet been proposed…. 2

  3. A new energy scale from confinement? Well-known example: QCD at low momentum scales QCD Static properties of light hadrons can be completely determined by two dimensionful vacuum parameters: gluon condensate: light quark condensate: Simplistic approach: one employs a direct analogy with QCD Spectrum of light composites (incl. Higgs) is governed by “T-QCD” The energy scale of both EW theory ( SM ) and working new strongly - coupled dynamics has a common hypothesis: origin: the Tquark - Tgluon condensate 3

  4. Issues of Technicolor: oblique corrections should not disturb EW obs too much! New Physics must come in loops 1 − � α ( M Z ) T Peskin&Takeuchi PRL’90 M 2 Z = M 2 � Z 0 √ 1 − G F M 2 Z 0 S/ 2 2 π − Generic parameterization 1 M 2 W = M 2 of NP effects is EW observables √ W 0 1 − G F M 2 W 0 ( S + U ) / 2 2 π in terms of S,T,U parameters M 3 Z β Z Γ Z = α ( M Z ) T , 1 − � PDG’13 Extra chiral heavy family doublet brings up � � 2 � EW precision constraints on New Physics S = C , = 4 e 2 / 3 π t 3 L ( i ) − t 3 R ( i ) 3 π S = 0 . 00 +0 . 11 i T = 0 . 02 +0 . 11 − 0 . 10 , − 0 . 12 , U = 0 . 08 ± 0 . 11 , ] S ∼ 0 . 45 Standard QCD - like TC axial SU ( 2 ) vector SU ( 2 ) Non - QCD - like ( Walking ) TC still breaking breaking survives but has other issues… • Flavour-Changing neutral-currents � Is a new QCD - like dynamics • Too-light quarks � completely dead? • Too many unobserved pseudo-Goldstone states 4

  5. Vector-like weak interactions Which confined symmetry enables to transform a chiral UV completion into a vector-like one? RP et al, arXiv:1407.2392 � � � 0 , if N TC = 2 , U ˜ y SU ( N TC ) TC Q = , Y ˜ Q = D 1 / 3 , if N TC = 3 . start with new R-handed WEAK L ( A ) + i two generations Q a α ′ ˜ L ( A ) = ˜ k ˜ DOUBLET Q a α 2 g W θ k τ ab Q b α of CHIRAL fields L ( A ) ) of left-handed T-qua + i R (2) ≡ ε ab ε αβ Q Cb β 2 g T C ϕ k τ αβ Q a β ˜ Q a α L ( A ) , e SU (2) W ⊗ SU (2) TC L (2) k ( A = 1 , 2) We end up Dirac WEAK ˆ C Q a α L (2) = Q Ca α L (2) , DOUBLET charge conjugation L (2) − i Q Ca α ′ L (2) = Q Ca α 2 g W θ k ( τ ab k ) ∗ Q Cb α of the SECOND L (2) Q a α = Q a α L (1) + Q a α generation − i R (2) 2 g T C ϕ k ( τ αβ k ) ∗ Q Ca β L (2) . At the fundamental level, we arrive at the simplest possible VLTC Lagrangian: 5

  6. Toy-model of DEWSB: SU(2) L xSU(2) R L σ M L σ M in QCD hadron physics: a model for constituent quark - meson interactions the source term � � − g TC ¯ ⟨ ¯ QQ ⟩ S + ¯ Q ( S + i γ 5 P a ) Q → − g TC Q ( S + i γ 5 P a τ a ) Q QQ → ⟨ ¯ ¯ QQ ⟩ + ¯ QQ pseudoscalar T-pions scalar T-sigma QGC formation (adjoint rep.) (singlet rep.) S = u + σ lightest � collective excitation � T-glueball of T-quark condensate T - pion mass global chiral SSB = − g TC ⟨ ¯ Q ˜ ˜ Q ⟩ f µ S , H � m ˜ SU (2) L ⊗ SU (2) R → SU (2) V ≡ L+R m Q � m π = π u 1 H H 2 − 1 S ( S 2 + P 2 ) + µ 2 4 λ TC ( S 2 + P 2 ) 2 − λ H H 4 + λ H 2 ( S 2 + P 2 ) 2 µ 2 Potential � 1 / 3 � 1 / 2 � λ H � 1 / 3 � λ H � ξλ ⟨ H ⟩ = 1 � � 0 g 1 / 3 g 1 / 3 √ u = ¯ v = ¯ TC , v TC 2 δ λ H δ ms: • Both chiral and EW SSB are dynamically linked to T-quark condensate � • T-pion gets mass via T-sigma interaction with T-quark condensate � Spontaneous • T-pions remain physical, the Higgs-like mechanism becomes effective EWSB 6

  7. SU(2) L xSU(2) R : parameter space RP et al, o m ˜ π = 150 , 250 , 350 GeV, PRD88, 075009 √ (2013) √ it M ˜ σ → 3 m ˜ π , w bsolute value of sine o √ of ∆ m ˜ σ ≡ m ˜ 3 m ˜ σ − π 1 ~ mixing v/u ratio h σ 1 |sin θ | v/u 0.1 0.1 only gauge interactions m π ~ = 80 GeV m π ~ = 80 GeV m π ~ = 150 GeV m π ~ = 150 GeV of light T - pions remain… m π ~ = 300 GeV m π ~ = 300 GeV 0.01 0.01 -40 -20 0 20 40 -40 -20 0 20 40 7 ∆ m σ ~ (GeV) ∆ m σ ~ (GeV)

  8. SU(2) L xSU(2) R : oblique corrections NEW! Modified SM + T-sigma! NEW! 8

  9. T-pion and Dirac T-quark contributions RP et al, PRD88, 075009 (2013) give vanishing contributions can be large in to all oblique corrections the T-parameter only! for any VLTC parameters! T-pion/T-quark loops Vector-like weak interactions of the UV completion preserve Technicolor! 9

  10. T-parameter: constraint on σ h-mixing and σ -mass RP et al, PRD88, 075009 (2013) a small mixing angle and/or small σ -mass are preferable! Given by scalar contribution ONLY 10

  11. SU(2) L xSU(2) R : Higgs signal rates γ γ γ f, ˜ Q W W h, ˜ h, ˜ h, ˜ σ σ σ f, ˜ + Q + W W f, ˜ Q W γ γ γ ( a ) ( b ) ( c ) π + π + γ ˜ γ π + ˜ h, ˜ h, ˜ σ + σ ˜ π − ˜ γ π − γ ( d ) ( e ) res res t) m ˜ π = 350 GeV, ) g TC = 8, res Μ ΓΓ Μ ΓΓ ) m ˜ π = 350 GeV, M ˜ Q = 500 GeV, 2.0 d M ˜ Q = 400 , 500 , 700 GeV, 2.0 d g TC = 2 , 8 , 15, 1.5 1.5 1.0 1.0 0.5 0.5 � , GeV M Σ � , GeV M Σ 500 600 700 800 500 600 700 800 11 res

  12. SU(2) L xSU(2) R : search for T-pions T-pion branching ratios γγ γ Z T - pion decay ZZ γ W ZW 1 γ , Z, W ± γ , Z, W ± ~ -> VV) ˜ ˜ Q Q π 0 , ± π 0 , ± ˜ ˜ BR( π ˜ Q 0.1 e Y Q = 0 ˜ f Y Q ̸ = 0, ˜ Q Q 0.01 150 200 250 300 350 400 450 500 RP et al, m π ~ (GeV) NP881, 288 (2014) Signal Background p 1 p ′ 1 u, d q 1 γ γ γ γ π 0 π 0 ˜ ˜ γ γ U, D U, D q 0 γ γ q 2 γ γ γ γ p ′ p 2 2 1 (fb/GeV) 10 1 (fb) T-pion production cross section γ and Z ∼ 0 pp → p γ γ p pp → pp π γ only -1 10 s = 14 TeV E pp =14 TeV σ s = 14 TeV | η | < 2.5 γ γ fusion via gg γ ~ 0 ) (pb) γ -2 10 γ 1 /dM σ (pp -> X + jj + π no Sudakov ff’s -3 σ 10 0.1 d -4 -1 10 10 via γ γ g = 10 -5 10 TC M = 100, 200 GeV M Q ~ = 300 GeV, g TC = 10, CTEQ5L quark PDFs ∼ 0 π -2 0.01 10 -6 10 200 300 400 500 160 180 200 220 240 260 280 300 0 200 400 m (GeV) ~ m π ~ (GeV) 12 Q M (GeV) γ γ

  13. SU(3) L xSU(3) R composite Higgs model: content e accounts for the d Q R = ( U, D, S ) R chiral Dirac T-quarks in SU(2) TC s Q L = ( U, D, S ) L ing groups � � L T C = − 1 ∂ µ − i µ τ A − i n + i ¯ Q − m Q ¯ 4 T n µ ν T µ ν Q γ µ 2 g T C T n A µ τ n QQ + 2 g W W Fundamental Lagrangian � � ∂ µ + i 2 g 1 B µ − i + i ¯ S − m S ¯ S γ µ 2 g T C T n µ τ n SS ⎟ ⎟ ⎟ ⎟ K + , K 0 , ¯ π + , π 0 , π − ; K 0 , K − ; η pseudo-Goldstones: ⎠ ⎠ + 3 σ 3 η ′ H + , H 0 , ¯ a + , a 0 , a − ; H 0 , H − ; f , their chiral partners: 2 a 0 + 1 1 1 a + H + ⎛ 6 f + ⎞ 3 σ √ √ √ Φ = 1 2 a 0 + − 1 1 1 H 0 ˆ a − 6 f + 3 σ ⎜ ⎟ √ √ √ √ ⎠ − ⎜ ⎟ 2 ⎝ � ¯ 2 1 H 0 3 f + H − 3 σ − √ components of the 2 π 0 + bi-fundamental rep: 1 1 1 π + K + ⎛ 6 η + 3 η ′ ⎞ √ √ √ − i 2 π 0 + − 1 1 1 K 0 π − 6 η + 3 η ′ ⎜ ⎟ √ √ √ √ ⎜ ⎟ 2 ⎝ � ⎠ ¯ 2 1 K 0 3 η + K − 3 η ′ − √ √ Φ + · ∂ µ ˆ L σ = i ¯ 6 κ ( ¯ Q L Φ Q R + ¯ Q R Φ + Q L ) + ∂ µ ˆ Q γ µ ∂ µ Q − Φ + Generic global L σ M √ Lagrangian: Φ + ˆ Φ + ˆ Φ + ˆ Φ + ˆ + µ 2 ˆ Φ − λ 1 (ˆ Φ ) 2 − 3 λ 2 ˆ Φ ˆ Φ + 2 6 Λ 3 Re det Φ . 13

  14. SU(3) L xSU(3) R CHM: EW interactions of composites Additional EW-invariant piece to the Higgs-less SM Lagrangian: � ∂ µ − i � � ∂ µ + i � √ L σ = i ¯ Q + i ¯ 6 κ ( ¯ Q L Φ Q R + ¯ Q R Φ + Q L )+ Q γ µ 2 g W W a S γ µ 2 g 1 B µ S − µ τ a 1 2( D µ π a · D µ π a + D µ a a · D µ a a ) + ( D µ K ) + · D µ K + ( D µ H ) + · D µ H + composite Higgs - like kinetic terms 1 2( ∂ µ η · ∂ µ η + ∂ µ η 0 · ∂ µ η 0 + ∂ µ f · ∂ µ f + ∂ µ σ · ∂ µ σ )+ √ Φ + ˆ Φ + ˆ Φ + ˆ Φ + ˆ µ 2 ˆ Φ − λ 1 (ˆ Φ ) 2 − 3 λ 2 ˆ Φ ˆ Φ + 2 6 Λ 3 Re det Φ − replaces Higgs potential mn ¯ mn ¯ mn ¯ Q m ˜ ( Y l L m HE n + Y d Q m HD n + Y u HU n + h.c. ) − to be l d u mn ¯ mn ¯ mn ¯ Q m ˜ ( Y L m KE n + Y Q m KD n + Y KU n + h.c. ) , constrained by FCNC etc where D µ π a = ∂ µ π a + g W e abc W b D µ a a = ∂ µ a a + g W e abc W b µ π c , µ a c , D µ K = ∂ µ K − i 2 g 1 B µ − i D µ H = ∂ µ H − i 2 g 1 B µ − i 2 g W W a 2 g W W a µ τ a K, µ τ a H . Structure of the theory has certain similarities to the class of THDMs! 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend