precision higgs measurements at higgs factories
play

Precision Higgs Measurements at Higgs factories LianTao Wang - PowerPoint PPT Presentation

Precision Higgs Measurements at Higgs factories LianTao Wang University of Chicago ICTP . Sept. 8, 2016 A first glance beyond the energy frontier 24 Present ATLAS Exotics Searches* - 95% CL Exclusion ATLAS Preliminary s = 8, 13 TeV


  1. Precision Higgs Measurements at Higgs factories LianTao Wang University of Chicago ICTP . Sept. 8, 2016 A first glance beyond the energy frontier

  2. 24 Present ATLAS Exotics Searches* - 95% CL Exclusion ATLAS Preliminary √ s = 8, 13 TeV Status: August 2016 � L dt = (3.2 - 20.3) fb − 1 Jets † E miss Model ℓ , γ � L dt[fb − 1 ] Reference Limit T ADD G KK + g / q ≥ 1 j Yes 3.2 M D 6.58 TeV n = 2 1604.07773 − 2 e , µ M S ADD non-resonant ℓℓ − − 20.3 4.7 TeV n = 3 HLZ 1407.2410 Extra dimensions 1 e , µ 1 j ADD QBH → ℓ q − 20.3 M th 5.2 TeV n = 6 1311.2006 ADD QBH 2 j 15.7 M th 8.7 TeV n = 6 ATLAS-CONF-2016-069 − − ADD BH high � p T ≥ 1 e , µ ≥ 2 j M th n = 6 , M D = 3 TeV, rot BH − 3.2 8.2 TeV 1606.02265 ADD BH multijet ≥ 3 j − − 3.6 M th 9.55 TeV n = 6 , M D = 3 TeV, rot BH 1512.02586 RS1 G KK → ℓℓ 2 e , µ 20.3 G KK mass 2.68 TeV 1405.4123 − − k / M Pl = 0.1 RS1 G KK → γγ 2 γ G KK mass − − 3.2 3.2 TeV k / M Pl = 0.1 1606.03833 1 e , µ Bulk RS G KK → WW → qq ℓν 1 J Yes 13.2 G KK mass 1.24 TeV k / M Pl = 1.0 ATLAS-CONF-2016-062 Bulk RS G KK → HH → bbbb 4 b 13.3 G KK mass 360-860 GeV ATLAS-CONF-2016-049 − − k / M Pl = 1.0 Bulk RS g KK → tt 1 e , µ ≥ 1 b, ≥ 1 J/2j Yes g KK mass 20.3 2.2 TeV BR = 0.925 1505.07018 1 e , µ ≥ 2 b, ≥ 4 j Tier (1,1), BR( A (1,1) → tt ) = 1 2UED / RPP Yes 3.2 KK mass 1.46 TeV ATLAS-CONF-2016-013 SSM Z ′ → ℓℓ Z ′ mass 2 e , µ 13.3 4.05 TeV − − ATLAS-CONF-2016-045 Gauge bosons Z ′ mass SSM Z ′ → ττ 2 τ − − 19.5 2.02 TeV 1502.07177 Leptophobic Z ′ → bb Z ′ mass − 2 b − 3.2 1.5 TeV 1603.08791 SSM W ′ → ℓν W ′ mass 1 e , µ Yes 13.3 4.74 TeV − ATLAS-CONF-2016-061 HVT W ′ → WZ → qq νν model A W ′ mass 0 e , µ g V = 1 1 J Yes 13.2 2.4 TeV ATLAS-CONF-2016-082 HVT W ′ → WZ → qqqq model B W ′ mass − 2 J − 15.5 3.0 TeV g V = 3 ATLAS-CONF-2016-055 HVT V ′ → WH / ZH model B V ′ mass multi-channel 3.2 2.31 TeV g V = 3 1607.05621 W ′ mass LRSM W ′ R → tb 1 e , µ 2 b, 0-1 j Yes 20.3 1.92 TeV 1410.4103 LRSM W ′ R → tb 0 e , µ ≥ 1 b, 1 J W ′ mass − 20.3 1.76 TeV 1408.0886 CI qqqq 2 j 15.7 19.9 TeV η LL = − 1 − − Λ ATLAS-CONF-2016-069 CI CI ℓℓ qq 2 e , µ η LL = − 1 − − 3.2 Λ 25.2 TeV 1607.03669 CI uutt 2(SS)/ ≥ 3 e , µ ≥ 1 b, ≥ 1 j Yes 20.3 Λ 4.9 TeV | C RR | = 1 1504.04605 Axial-vector mediator (Dirac DM) 0 e , µ ≥ 1 j 3.2 m A g q =0.25, g χ =1.0, m ( χ ) < 250 GeV Yes 1.0 TeV 1604.07773 DM Axial-vector mediator (Dirac DM) 0 e , µ , 1 γ 1 j m A g q =0.25, g χ =1.0, m ( χ ) < 150 GeV Yes 3.2 710 GeV 1604.01306 ZZ χχ EFT (Dirac DM) 0 e , µ 1 J, ≤ 1 j Yes 3.2 M ∗ 550 GeV m ( χ ) < 150 GeV ATLAS-CONF-2015-080 Scalar LQ 1 st gen ≥ 2 j β = 1 2 e − 3.2 LQ mass 1.1 TeV 1605.06035 LQ Scalar LQ 2 nd gen 2 µ ≥ 2 j − 3.2 LQ mass 1.05 TeV β = 1 1605.06035 Scalar LQ 3 rd gen 1 e , µ ≥ 1 b, ≥ 3 j Yes 20.3 LQ mass 640 GeV β = 0 1508.04735 VLQ TT → Ht + X 1 e , µ ≥ 2 b, ≥ 3 j Yes 20.3 T mass 855 GeV T in (T,B) doublet 1505.04306 1 e , µ ≥ 1 b, ≥ 3 j VLQ YY → Wb + X Yes 20.3 Y mass 770 GeV Y in (B,Y) doublet 1505.04306 Heavy quarks VLQ BB → Hb + X 1 e , µ ≥ 2 b, ≥ 3 j Yes 20.3 B mass 735 GeV isospin singlet 1505.04306 VLQ BB → Zb + X 2/ ≥ 3 e , µ ≥ 2/ ≥ 1 b − 20.3 B mass 755 GeV B in (B,Y) doublet 1409.5500 1 e , µ ≥ 4 j VLQ QQ → WqWq Yes 20.3 Q mass 690 GeV 1509.04261 VLQ T 5 / 3 T 5 / 3 → WtWt 2(SS)/ ≥ 3 e , µ ≥ 1 b, ≥ 1 j Yes 3.2 T 5 / 3 mass 990 GeV ATLAS-CONF-2016-032 Excited quark q ∗ → q γ q ∗ mass only u ∗ and d ∗ , Λ = m ( q ∗ ) 1 γ 1 j − 3.2 4.4 TeV 1512.05910 fermions Excited quark q ∗ → qg q ∗ mass only u ∗ and d ∗ , Λ = m ( q ∗ ) Excited − 2 j − 15.7 5.6 TeV ATLAS-CONF-2016-069 Excited quark b ∗ → bg b ∗ mass 1 b, 1 j 8.8 2.3 TeV − − ATLAS-CONF-2016-060 Excited quark b ∗ → Wt 1 or 2 e , µ 1 b, 2-0 j b ∗ mass f g = f L = f R = 1 Yes 20.3 1.5 TeV 1510.02664 Excited lepton ℓ ∗ 3 e , µ ℓ ∗ mass − − 20.3 3.0 TeV Λ = 3.0 TeV 1411.2921 ν ∗ mass Excited lepton ν ∗ 3 e , µ , τ 20.3 1.6 TeV Λ = 1.6 TeV − − 1411.2921 LSTC a T → W γ 1 e , µ , 1 γ a T mass − Yes 20.3 960 GeV 1407.8150 2 e , µ N 0 mass LRSM Majorana ν 2 j − 20.3 2.0 TeV m ( W R ) = 2.4 TeV, no mixing 1506.06020 Higgs triplet H ±± → ee H ±± mass 2 e (SS) 13.9 DY production, BR( H ±± → ee )=1 − − 570 GeV ATLAS-CONF-2016-051 L Other Higgs triplet H ±± → ℓτ 3 e , µ , τ H ±± mass DY production, BR( H ±± → ℓτ ) =1 − − 20.3 400 GeV 1411.2921 L 1 e , µ Monotop (non-res prod) 1 b Yes 20.3 spin-1 invisible particle mass 657 GeV a non − res = 0.2 1410.5404 Multi-charged particles 20.3 multi-charged particle mass DY production, | q | = 5 e − − − 785 GeV 1504.04188 Magnetic monopoles − − − 7.0 monopole mass 1.34 TeV DY production, | g | = 1 g D , spin 1 / 2 1509.08059 √ s = 8 TeV √ s = 13 TeV 10 − 1 1 10 Mass scale [TeV] *Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. - No “early” discovery. - Next?

  3. This talk - Focus on longer term future. - Higgs measurements at Higgs factories and what we can learn from it. Assuming no LHC discovery. - General picture. (brief) - A couple of new studies.

  4. Higgs factories - FCC-ee, CEPC, ILC, CLIC. - Physics case relatively independent of the outcome of the LHC. Reach further than the LHC. Address questions that LHC can’ t answer.

  5. Probing NP with precision measurements - CEPC: clean environment, good for precision. - We are going after deviations of the form δ ' c v 2 M NP : mass of new physics c: O( 1) coefficient M 2 NP - Take for example the Higgs coupling. LHC precision: 5-10% ⇒ sensitive to M NP < TeV However, M NP < TeV largely excluded by direct NP searches at the LHC. To go beyond the LHC, need 1% or less precision.

  6. Higgs factory processes e + e + e + ¯ ν e e + H W ∗ Z ∗ Z ∗ H H W ∗ Z ∗ e − Z e − e − ν e e − 250 CEPC Preliminary 200 Total Nevents in 5 ab − 1 Process Cross section Higgs boson production, cross section in fb 150 (fb) e + e − → ZH 1 . 06 × 10 6 HZ 212 e + e − → νν H 3 . 36 × 10 4 6.72 σ 100 e + e − → eeH 3 . 15 × 10 3 0.63 1 . 10 × 10 6 Total 219 50 HZ( ) → ν ν WW H → 0 200 250 300 350 400 - + e e f f H [GeV] →

  7. Zh cross section CEPC Preliminary ∫ -1 → + - Z ; Ldt = 5 ab µ µ 3000 � CEPC Simulation Entries/0.2 GeV S+B Fit � Signal Background 2000 h e + e − 1000 Z f 0 120 125 130 135 140 - + µ µ M [GeV] ¯ f zero momentum: recoil recoil = ( √ s − E ff ) 2 − p 2 √ s + m 2 M 2 ff = s − 2 E ff ff and are, respectively, the total energy, momentum a Can use recoil mass to identify Zh process, independent of Higgs decay ⇒ inclusive measurement of Zh cross section

  8. Higgs width. Unique capability of lepton colliders. Z Z* Γ H ∝ Γ ( H → ZZ ∗ ) σ ( ZH ) BR( H → ZZ ∗ ) ∝ h BR( H → ZZ ∗ ) e + e − Z Main channel at 250 GeV. f Needs statistics ¯ f e − W b Γ H ∝ Γ ( H → bb ) σ ( νν H → νν bb ) BR( H → bb ) ∝ h BR( H → bb ) · BR( H → WW ∗ ) ¯ b W e + Needs to go beyond 250.

  9. Higgs factories Measured Higgs-X coupling κ X = Standard Model Higgs-X coupling Precision of Higgs couplingmeasurement ( Contrained Fit ) 1 Projected precision of Higgs coupling and width (model-independent fit) % 10 18% 20% HL - LHC wi / wo theo. uncertainty -1 -1 -1 ILC 500 GeV, 500 fb 350 GeV, 200 fb 250 GeV, 500 fb ⊕ ⊕ 9 % -1 -1 -1 ILC 500 GeV, 4000 fb ⊕ 350 GeV, 200 fb ⊕ 250 GeV, 2000 fb CEPC 250 GeV at 5 ab - 1 wi / wo HL - LHC ( with HL - LHC theo. uncertainty ) -1 ILC ⊕ HL-LHC 3000 fb combination % 8 0.1 Relative Error % 7 6 % 5 % 10 - 2 % 4 % 3 % 2 10 - 3 � b � c � g � W � � � Z � � 1 % 0 % Γ (CL95%) κ κ κ κ κ Γ κ κ κ κ g tot γ c t µ invis Z W b τ Highlights: HZ coupling to sub-percent level. Many couplings to percent level. Model independent measurement of total width. Sensitive to the triple Higgs coupling: 20-30%

  10. Higgs factories Measured Higgs-X coupling κ X = Standard Model Higgs-X coupling Precision of Higgs couplingmeasurement ( Contrained Fit ) 1 Projected precision of Higgs coupling and width (model-independent fit) % 10 18% 20% HL - LHC wi / wo theo. uncertainty -1 -1 -1 ILC 500 GeV, 500 fb 350 GeV, 200 fb 250 GeV, 500 fb ⊕ ⊕ 9 % -1 -1 -1 ILC 500 GeV, 4000 fb ⊕ 350 GeV, 200 fb ⊕ 250 GeV, 2000 fb CEPC 250 GeV at 5 ab - 1 wi / wo HL - LHC ( with HL - LHC theo. uncertainty ) -1 ILC ⊕ HL-LHC 3000 fb combination % 8 0.1 Relative Error % 7 6 % 5 % 10 - 2 % 4 % 3 % 2 10 - 3 � b � c � g � W � � � Z � � 1 % 0 % Γ (CL95%) κ κ κ κ κ Γ κ κ κ κ g tot γ c t µ invis Z W b τ Highlights: HZ coupling to sub-percent level. Many couplings to percent level. Model independent measurement of total width. Sensitive to the triple Higgs coupling: 20-30%

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend