path integrals asymptotic expansions and zeta determinants
play

Path Integrals, asymptotic expansions and Zeta determinants - PowerPoint PPT Presentation

Path Integrals, asymptotic expansions and Zeta determinants Matthias Ludewig Universitt Potsdam February 11, 2016 Matthias Ludewig (Uni Potsdam) 11.02.16 1 / 24 The heat equation Let L = be a Laplace type operator, acting on


  1. Path Integrals, asymptotic expansions and Zeta determinants Matthias Ludewig Universität Potsdam February 11, 2016 Matthias Ludewig (Uni Potsdam) 11.02.16 1 / 24

  2. The heat equation Let L = ∇ ∗ ∇ be a Laplace type operator, acting on sections of a vector bundle V on a compact n -dimensional Riemannian manifold M . The heat or diffusion equation ∂ ∂tu ( t, x ) + Lu ( t, x ) = 0 , u (0 , x ) = u 0 ( x ) has a unique solution for given initial data u 0 ∈ L 2 ( M, V ) , and it is given by ˆ p L u ( t, x ) = t ( x, y ) u ( y )d y, t > 0 M where p L t ∈ C ∞ ( M × M, V ⊠ V ∗ ) is the heat kernel of L . Matthias Ludewig (Uni Potsdam) 11.02.16 2 / 24

  3. The heat kernel as a path integral By physicist’s reasoning, the heat kernel can be written as the "sum over all histories", weighted with their probability. ˆ 1 � − 1 � formally � � 0 ] − 1 D γ � 2 d s p L (4 πt ) − n/ 2 [ γ � 1 t ( x, y ) = exp � ˙ γ ( s ) 4 t 0 paths x �→ y Matthias Ludewig (Uni Potsdam) 11.02.16 3 / 24

  4. The heat kernel as a path integral By physicist’s reasoning, the heat kernel can be written as the "sum over all histories", weighted with their probability. ˆ 1 � − 1 � formally � � 0 ] − 1 D γ � 2 d s p L (4 πt ) − n/ 2 [ γ � 1 t ( x, y ) = exp � ˙ γ ( s ) 4 t 0 � �� � paths x �→ y Classical action Matthias Ludewig (Uni Potsdam) 11.02.16 3 / 24

  5. The heat kernel as a path integral By physicist’s reasoning, the heat kernel can be written as the "sum over all histories", weighted with their probability. ˆ 1 � − 1 � formally � � 0 ] − 1 D γ � 2 d s p L (4 πt ) − n/ 2 [ γ � 1 t ( x, y ) = exp � ˙ γ ( s ) 4 t 0 � �� � paths x �→ y Classical action The slash in the integral sign denotes division by the normalization Z = (4 πt ) N/ 2 , N = dimension of path space D γ denotes the Riemannian volume measure of the space of paths. Matthias Ludewig (Uni Potsdam) 11.02.16 3 / 24

  6. The heat kernel as a path integral formally e − E ( γ ) / 2 t [ γ � 1 0 ] − 1 D γ p L (4 πt ) − n/ 2 t ( x, y ) = paths x �→ y Matthias Ludewig (Uni Potsdam) 11.02.16 4 / 24

  7. The heat kernel as a path integral formally e − E ( γ ) / 2 t [ γ � 1 0 ] − 1 D γ p L (4 πt ) − n/ 2 t ( x, y ) = paths x �→ y Theorem We have ˆ 0 ] − 1 d W xy ; t ( γ ) . p L [ γ � 1 t ( x, y ) = C xy ( M ) 0 ] − 1 is the stochastic parallel transport in V , W xy ; t is a In the theorem, [ γ � 1 conditional Wiener measure and C xy ; t ( M ) = { γ ∈ C ([0 , t ] , M ) | γ (0) = x, γ (1) = y } Matthias Ludewig (Uni Potsdam) 11.02.16 4 / 24

  8. The heat kernel as a path integral formally e − E ( γ ) / 2 t [ γ � 1 0 ] − 1 D γ p L (4 πt ) − n/ 2 t ( x, y ) = paths x �→ y Theorem (L. ’15) We have e − E ( γ ) / 2 t [ γ � 1 0 ] − 1 d Σ - H 1 γ p L t ( x, y ) = lim | τ |→ 0 H xy ; τ ( M ) where the limit goes over any sequence of partitions τ = { 0 = τ 0 < τ 1 < · · · < τ N = 1 } of the interval [0 , 1] , the mesh of which tends to zero. In the theorem, � � H xy ; τ ( M ) = γ ∈ H xy ( M ) | γ | [ τ j − 1 ,τ j ] is a geodesic ∀ j Matthias Ludewig (Uni Potsdam) 11.02.16 5 / 24

  9. The space of finite energy paths An important path space is the space of finite energy paths � � γ ∈ H 1 ([0 , t ] , M ) | γ (0) = x, γ (1) = y H xy ( M ) := . This is an infinite-dimensional Hilbert manifold with the Riemannian metric ˆ 1 � � ( X, Y ) H 1 := ∇ s X, ∇ s Y d s, X, Y ∈ T γ H xy ( M ) . 0 It is the "Cameron-Martin-manifold" corresponding to the Wiener measure. Matthias Ludewig (Uni Potsdam) 11.02.16 6 / 24

  10. formally p L (4 πt ) − n/ 2 e − E ( γ ) / 2 t [ γ � 1 0 ] − 1 D γ t ( x, y ) = H xy ( M ) Matthias Ludewig (Uni Potsdam) 11.02.16 7 / 24

  11. formally p L (4 πt ) − n/ 2 e − E ( γ ) / 2 t [ γ � 1 0 ] − 1 D γ t ( x, y ) = H xy ( M ) • The heat kernel has an asymptotic expansion ∞ e t ( x, y ) = e − d ( x,y ) 2 / 4 t � p L t j Φ j ( x, y ) , t ( x, y ) ∼ e t ( x, y ) (4 πt ) n/ 2 j =0 Matthias Ludewig (Uni Potsdam) 11.02.16 7 / 24

  12. formally p L (4 πt ) − n/ 2 e − E ( γ ) / 2 t [ γ � 1 0 ] − 1 D γ t ( x, y ) = H xy ( M ) • The heat kernel has an asymptotic expansion ∞ e t ( x, y ) = e − d ( x,y ) 2 / 4 t � p L t j Φ j ( x, y ) , t ( x, y ) ∼ e t ( x, y ) (4 πt ) n/ 2 j =0 • The path integral has a formal Laplace expansion. Matthias Ludewig (Uni Potsdam) 11.02.16 7 / 24

  13. formally p L (4 πt ) − n/ 2 e − E ( γ ) / 2 t [ γ � 1 0 ] − 1 D γ t ( x, y ) = H xy ( M ) • The heat kernel has an asymptotic expansion ∞ e t ( x, y ) = e − d ( x,y ) 2 / 4 t � p L t j Φ j ( x, y ) , t ( x, y ) ∼ e t ( x, y ) (4 πt ) n/ 2 j =0 • The path integral has a formal Laplace expansion. Goal Compare the two asymptotic expansions. In this talk: The lowest order term. Matthias Ludewig (Uni Potsdam) 11.02.16 7 / 24

  14. formally p L (4 πt ) − n/ 2 e − E ( γ ) / 2 t [ γ � 1 0 ] − 1 D γ t ( x, y ) = H xy ( M ) • The heat kernel has an asymptotic expansion ∞ e t ( x, y ) = e − d ( x,y ) 2 / 4 t � p L t j Φ j ( x, y ) , t ( x, y ) ∼ e t ( x, y ) (4 πt ) n/ 2 j =0 • The path integral has a formal Laplace expansion. Goal Compare the two asymptotic expansions. In this talk: The lowest order term. Matthias Ludewig (Uni Potsdam) 11.02.16 7 / 24

  15. Laplace’s Expansion Let Ω be a finite-dimensional Riemannian manifold. If φ : Ω − → R has the unique non-degenerate minimum x 0 , then a ( x 0 ) e − φ ( x ) / 2 t a ( x ) d x ∼ e − φ ( x 0 ) / 2 t � � 1 / 2 det ∇ 2 φ | x 0 Ω Matthias Ludewig (Uni Potsdam) 11.02.16 8 / 24

  16. Laplace’s Expansion Let Ω be a finite-dimensional Riemannian manifold. If φ : Ω − → R has the unique non-degenerate minimum x 0 , then a ( x 0 ) e − φ ( x ) / 2 t a ( x ) d x ∼ e − φ ( x 0 ) / 2 t � � 1 / 2 det ∇ 2 φ | x 0 Ω Formal conclusion If there is a unique shortest geodesic γ xy connecting x to y , then formally [ γ xy � 1 0 ] − 1 0 ] − 1 D γ ∼ e − d ( x,y ) 2 / 4 t e − E ( γ ) / 2 t [ γ � t � � 1 / 2 ∇ 2 E | γxy det H xy ( M ) since E ( γ xy ) = d ( x, y ) 2 / 2 . Matthias Ludewig (Uni Potsdam) 11.02.16 8 / 24

  17. A formal proof Taylor expand E ( γ ) = E ( γ xy ) + 1 2 ∇ 2 E | γ xy [ X, X ] + O ( | X | 3 ) , where X is the vector field with exp γ xy ( X ) = γ . Matthias Ludewig (Uni Potsdam) 11.02.16 9 / 24

  18. A formal proof Taylor expand E ( γ ) = E ( γ xy ) + 1 2 ∇ 2 E | γ xy [ X, X ] + O ( | X | 3 ) , where X is the vector field with exp γ xy ( X ) = γ . Then � � − E ( γ ) exp D γ 2 t � � �� − 1 E ( γ xy ) + 1 2 ∇ 2 E | γ xy [ X, X ] + O ( | X | 3 ) = exp D X 2 t Matthias Ludewig (Uni Potsdam) 11.02.16 9 / 24

  19. A formal proof Taylor expand E ( γ ) = E ( γ xy ) + 1 2 ∇ 2 E | γ xy [ X, X ] + O ( | X | 3 ) , where X is the vector field with exp γ xy ( X ) = γ . Then � � − E ( γ ) exp D γ 2 t � � �� − 1 E ( γ xy ) + 1 2 ∇ 2 E | γ xy [ X, X ] + O ( | X | 3 ) = exp D X 2 t substitute X �→ t 1 / 2 X gives � � − 1 = e − E ( γ xy ) / 2 t 4 ∇ 2 E | γ xy [ X, X ] + O ( t 1 / 2 | X | 3 ) exp D X Matthias Ludewig (Uni Potsdam) 11.02.16 9 / 24

  20. A formal proof Taylor expand E ( γ ) = E ( γ xy ) + 1 2 ∇ 2 E | γ xy [ X, X ] + O ( | X | 3 ) , where X is the vector field with exp γ xy ( X ) = γ . Then � � − E ( γ ) exp D γ 2 t � � �� − 1 E ( γ xy ) + 1 2 ∇ 2 E | γ xy [ X, X ] + O ( | X | 3 ) = exp D X 2 t substitute X �→ t 1 / 2 X gives � � − 1 = e − E ( γ xy ) / 2 t 4 ∇ 2 E | γ xy [ X, X ] + O ( t 1 / 2 | X | 3 ) exp D X and in the limit t → 0 � � − 1 ∼ e − E ( γ xy ) / 2 t 4 ∇ 2 E | γ xy [ X, X ] exp D X Matthias Ludewig (Uni Potsdam) 11.02.16 9 / 24

  21. A formal proof Taylor expand E ( γ ) = E ( γ xy ) + 1 2 ∇ 2 E | γ xy [ X, X ] + O ( | X | 3 ) , where X is the vector field with exp γ xy ( X ) = γ . Then � � − E ( γ ) exp D γ 2 t � � �� − 1 E ( γ xy ) + 1 2 ∇ 2 E | γ xy [ X, X ] + O ( | X | 3 ) = exp D X 2 t substitute X �→ t 1 / 2 X gives � � − 1 = e − E ( γ xy ) / 2 t 4 ∇ 2 E | γ xy [ X, X ] + O ( t 1 / 2 | X | 3 ) exp D X and in the limit t → 0 � � − 1 ∼ e − E ( γ xy ) / 2 t 4 ∇ 2 E | γ xy [ X, X ] exp D X ∼ e − E ( γ xy ) / 2 t det � � − 1 / 2 ∇ 2 E | γ xy Matthias Ludewig (Uni Potsdam) 11.02.16 9 / 24

  22. Remark At a geodesic γ , the Hessian of the energy is given by ˆ 1 ˆ 1 � � � � � � ∇ 2 E | γ [ X, Y ] = ∇ s X, ∇ s Y d s + R γ ( s ) , X ( s ) ˙ γ ( s ) , Y ( s ) ˙ d s 0 0 Matthias Ludewig (Uni Potsdam) 11.02.16 10 / 24

  23. Remark At a geodesic γ , the Hessian of the energy is given by ˆ 1 ˆ 1 � � � � � � ∇ 2 E | γ [ X, Y ] = ∇ s X, ∇ s Y d s + R γ ( s ) , X ( s ) ˙ γ ( s ) ˙ , Y ( s ) d s 0 0 � �� � := R γ ( s ) X ( s ) Matthias Ludewig (Uni Potsdam) 11.02.16 10 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend