poroelasticity
play

Poroelasticity Zhuoran Wang Colorado State University Zhuoran Wang - PowerPoint PPT Presentation

Poroelasticity Zhuoran Wang Colorado State University Zhuoran Wang Poroelasticity Linear poroelasticity Poroelasticity equation: (2 ( u ) + ( u ) I ) + p = f , (1) t ( c 0 p + u ) + (


  1. Poroelasticity Zhuoran Wang Colorado State University Zhuoran Wang Poroelasticity

  2. Linear poroelasticity Poroelasticity equation: � −∇ · (2 µε ( u ) + λ ( ∇ · u ) I ) + α ∇ p = f , (1) ∂ t ( c 0 p + α ∇ · u ) + ∇ · ( − K ∇ p ) = s where µ = 1 , λ = 1 , α = 1 , c 0 = 0 . 1 , K = κ I . It is a coupled PDEs for poroelasticity. Zhuoran Wang Poroelasticity

  3. Numerical experiments for linear poroelasticity We test the example which is on (0 , 1) 2 for linear poroelasicity. Dirichlet boundary condition for displacement is u D = u and for pressure is p D = p . Zhuoran Wang Poroelasticity

  4. Numerical experiments for linear poroelasticity u is the known vector valued displacement function: u = − 1 � cos(2 π x ) sin(2 π y ) � 4 π sin(2 π t ) . sin(2 π x ) cos(2 π y ) The strain tensor is: ε ( u ) = 1 2( ∇ u + ( ∇ u ) T ) The stress tensor is: σ ( u ) = 2 µε ( u ) + λ ( ∇ · u ) · I Zhuoran Wang Poroelasticity

  5. Numerical experiments for linear poroelasticity p is the known scalar valued pressure function: p = sin(2 π t ) sin(2 π x ) sin(2 π y ) . � cos(2 π x ) sin(2 π y ) � ∇ p = 2 π sin(2 π t ) sin(2 π x ) cos(2 π y ) Zhuoran Wang Poroelasticity

  6. Numerical experiments for linear poroelasticity So right hand side of linear poroelasticity: � cos(2 π x ) sin(2 π y ) � f = ( − 2 µ − λ + α )2 π sin(2 π t ) , sin(2 π x ) cos(2 π y ) s = (sin(2 π x ) sin(2 π y ))(2 π cos(2 π t )( c 0 + α ) + 8 π 2 κ sin(2 π t )) . Zhuoran Wang Poroelasticity

  7. Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Following figures are numerical displacement and pressure based on different κ when n = 32. Numerical pressure elementwise at fime time Numerical displacement elementwise at final time 1 1 0.8 0.9 0.9 0.6 0.8 0.8 0.4 0.7 0.7 0.2 0.6 0.6 0.5 0.5 0 0.4 0.4 -0.2 0.3 0.3 -0.4 0.2 0.2 -0.6 0.1 0.1 -0.8 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Left : Displacement with n = 32, κ = 10 − 6 . Right : Pressure with n = Figure: 32, κ = 10 − 6 . Zhuoran Wang Poroelasticity

  8. Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Numerical pressure elementwise at fime time Numerical displacement elementwise at final time 1 1 0.9 0.8 0.9 0.8 0.6 0.8 0.7 0.4 0.7 0.6 0.2 0.6 0.5 0 0.5 0.4 0.4 -0.2 0.3 0.3 -0.4 0.2 0.2 -0.6 0.1 0.1 -0.8 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6 0.8 1 Figure: Left : Displacement with n = 32, κ = 1. Right : Pressure with n = 32, κ = 1. Zhuoran Wang Poroelasticity

  9. Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Numerical pressure elementwise at fime time Numerical displacement elementwise at final time 1 1 0.9 0.8 0.9 0.8 0.6 0.8 0.7 0.4 0.7 0.6 0.2 0.6 0.5 0 0.5 0.4 0.4 -0.2 0.3 0.3 -0.4 0.2 0.2 -0.6 0.1 0.1 -0.8 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Left : Displacement with n = 32, κ = 10 3 . Right : Pressure with n = Figure: 32, κ = 10 3 . Zhuoran Wang Poroelasticity

  10. Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure The table shows the maximum of differences of the exactly displacement and numerical displacement, and the maximum of differences of the exactly pressure and numerical pressure with n = 16 , 32 , 64, κ = 10 − 6 , 1 , 10 3 . Table: Errors of numerical value with different κ κ = 10 − 6 κ = 10 3 κ = 1 error max(ErrDsplT) max(ErrPresT) max(ErrDsplT) max(ErrPresT) max(ErrDsplT) max(ErrPresT) n = 16 2.6488E-03 2.4404E-01 8.1006E-03 1.6961E-02 8.3049E-03 1.2560E-02 n = 32 1.6019E-03 1.3404E-01 3.9255E-03 5.4317E-03 4.0192E-03 3.1964E-03 n = 128 8.6522E-04 7.0095E-02 1.9366E-03 1.9185E-03 1.9811E-03 8.0311E-04 Zhuoran Wang Poroelasticity

  11. Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure For calculating L2 error in space in one time step, find the difference between exact displacement u ( · , t n ) and the numerical value u ( n ) h ( · ) and then calculate the L2 error on the domain Ω. � 2 � � � u ( · , t n ) − u ( n ) h ( · ) , � � � Ω where t n means the time step. On the unit square domain, we have a mesh. And we calculate the L2 error on each element simultaneously. � 2 � � � u ( · , t n ) − u ( n ) � h ( · ) . � � � E E ∈ ε h Zhuoran Wang Poroelasticity

  12. Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Here, we have the same time step ∆ t with N T time steps totally. So the L2 error in displacement and time is � N T � � 2 � � � � u ( · , t n ) − u ( n ) � L2(L2)err = ∆ t n h ( · ) . � � � � Ω n =1 Zhuoran Wang Poroelasticity

  13. Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Table: Convergence rates of errors in the numerical displacement with time steps,Q1. n L2L2ErrDispl. conv. rate n = 8 2.1187E-03 – n = 16 6.8777E-04 1.6232 n = 32 2.6531E-04 1.3742 n = 64 1.1697E-04 1.1815 n = 128 5.5224E-05 1.0828 Zhuoran Wang Poroelasticity

  14. Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Another example is on a square domain. The final time as T = 10 − 3 . The value of permeability is κ = 10 − 6 . The Lam´ e coefficients are λ = 12500 and µ = 8333. On the top edge of the domain, p = 0, σ n = (0 , − 1) T . The boundary conditions of other sides are: ∇ p · n = 0, u = 0 . Zhuoran Wang Poroelasticity

  15. Numer. Exp.: Rectangular Meshes: Profiles of numerical displacement & pressure Numerical pressure elementwise at final time 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0.2 0.4 0.6 0.8 1 Figure: Left : Numerical Pressure with n = 40. Right : Contours of numerical pressure with n = 40. The figure shows the numerical pressure at final time. From the contour of the numerical pressure, we can see the pressure value. Zhuoran Wang Poroelasticity

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend