polarized fragmentation functions
play

Polarized Fragmentation Functions Anselm Vossen Research supported - PowerPoint PPT Presentation

CPHI-2020, CERN, February 2020 Polarized Fragmentation Functions Anselm Vossen Research supported by the Single Hadron production In SIDIS is a well travelled path Observables: z: fractional energy of the quark carried by the hadron p h,T :


  1. CPHI-2020, CERN, February 2020 Polarized Fragmentation Functions Anselm Vossen Research supported by the

  2. Single Hadron production In SIDIS is a well travelled path Observables: z: fractional energy of the quark carried by the hadron p h,T : transverse momentum of the hadron wrt the quark direction: TMD FFs Parton polarization Γ  Spin averaged longitudinal transverse Hadron Polarization ⇣ $/& (𝑨, π‘ž + ) .$/& (𝑨, π‘ž + ) spin averaged 𝐸 # 𝐼 # longitudinal Transverse (here L ) 2

  3. Transverse momentum dependent distributions (TMDs) β€’ In addition to the spin-spin correlations can have spin momentum correlations! Spin-orbit correlations 3

  4. PDF in SIDIS ⇔ 𝐺𝐺 in 𝑓 2 𝑓 3 β€’ E.g. Sivers ⇔ Ξ› ↑ production X X β€’ Spacelike SIDIS Timelike SIA β€’ GPDs ⇔ GDAs (not discussed here) 4

  5. β€œYou think you understand something?---Now add spin…in Hadronization!” β€’ Γ  polarized final states Ο€ + β€’ Γ  di-hadron correlations Ο€ – β€’ Explore spin-orbit correlation in hadronization β€’ Additional degrees of freedom in final state make targeted extraction of nucleon structure possible Γ  see h 1 (x), e(x) β€’ New Fragmentation Functions 5

  6. Enter polarization in the final States Observables: z: fractional energy of the quark carried by the hadron p h,T : transverse momentum of the hadron wrt the quark direction: TMD FFs Parton polarization Γ  Spin averaged longitudinal transverse Hadron Polarization ⇣ .π’Š/𝒓 (π’œ, 𝒒 𝑼 ) spin averaged $/& (𝑨, π‘ž + ) 𝐸 # 𝑰 𝟐 𝚳/𝒓 π’œ, 𝒒 𝑼 π’Š/𝒓 π’œ, 𝒒 𝑼 longitudinal 𝑯 𝟐 𝑰 πŸπ‘΄ Transverse (here L ) .𝚳/𝒓 ( π’œ, 𝒒 𝑼 ) 𝑬 πŸπ‘Ό 𝚳/𝐫 ( π’œ, 𝒒 𝑼 ) = 𝑰 𝟐 π’Š/𝒓 π’œ, 𝒒 𝑼 = 𝑯 πŸπ‘Ό .𝚳/𝐫 ( π’œ, 𝒒 𝑼 ) = 𝑰 πŸπ‘Ό β€’ Analogue Γ  similar to PDFs encoding spin/orbit correlations Determining final state polarization needs self analyzing decay ( Ξ›) β€’ β€’ Gluon FFs similar but with circular/linear polarization (not as relevant for e+e-) 6

  7. DI-HADRON FRAGMENTATION FUNCTIONS Additional Observable: 𝑆 = 𝑄 # βˆ’ 𝑄 W : The relative momentum of the hadron pair is an additional degree of freedom: the orientation of the two hadrons w.r.t. each other and the jet direction can be an indicator of the quark transverse spin Parton polarization Γ  Spin averaged longitudinal transverse Hadron Polarization ⇣ .π’Š/𝒓 (π’œ, 𝒒 𝑼 M, (Ph), q ) β€˜Di-hadron spin averaged $/& (𝑨, 𝑁) 𝑰 𝟐 𝐸 # Collins’ longitudinal G 1 βŠ₯ (z,M,P h , q )= H 1 − (z,M, (P h ), q )=. Transverse Type eq Ty equat ation he here. T -odd, chiral-even T -odd, chiral-odd Γ  jet handedness Colinear QCD vaccum strucuture β€’ Relative momentum of hadrons can carry away angular momentum β€’ Partial wave decomposition in q Γ  Needs to be mapped completely!! (no information yet) β€’ Energy dependence? ( Γ  VM fractions….) β€’ Relative and total angular momentum Γ  In principle endless tower of FFs 7

  8. Some specific points of interest . ) β€’ Spin orbit correlations in hadronization (e.g. 𝐻 # β€’ Interference patterns of different relative partial waves β€’ Access to aspects of the nucleon structure difficult in single hadrons β€’ Examples: β€’ Boer-Mulders w/o Cahn, twist3 β€’ e(x) Γ  See T. Hayward’s talk β€’ Ξ› production β€’ sensitive to s quarks β€’ FF counterpart to Sivers Γ  universality etc β€’ Test twist3 calculations β€’ Additional degrees of freedom Γ  Need large statistics 8

  9. Role of B-factories β€’Asymmetric-energy e + e - collider β€’ √s ∿ 10.6 GeV (Ο’(4S)) β€’ Ξ²Ξ³=0.425 β€’ L ∿ 1 ab -1 + + - - World Data (Sel.) for e World Data (Sel.) for e e e Β± Β± +X Production +X Production β†’ β†’ Ο€ Ο€ ) 13 s S β€’ Dominated by B 10 L D 9 1 G e V ( 1 1 c( Γ— 0 2 12 ) 10 D factories E L P H I NIMA 729 ,615(2013) Γ— 9 1 G 11 e 10 V ( /dz 5 Γ— ALEPH 91GeV ( 1 10 Γ— 0 ) 10 10 3 Γ— 10 9 Γ— β€’ Limited lever arm ) Οƒ NIMA 479 ,117(2002) 9 TASSO 34GeV, 44GeV ( 10 d tot.had. in 𝑑 in particular 8 10 7 Γ— 10 7 Γ— ) T P C 2 9 G 7 e V 10 ( 2 Γ— 1 6 Γ— 0 at high z ) Οƒ 6 10 1/ this meas., Belle 11 GeV ( 5 10 CLEO 10GeV ( β€’ Precision data 0.04) Γ— 4 10 3000) Γ— A R G 3 U includes charged S 10 9 G e V , 1 0 G e V ( 1 2 Γ— 5 10 0 ) single hadrons p , R o n a n e t a 10 l . 3 G e V ( 1 ) Γ— K, p, D, Ξ›, charmed 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 baryons… z Phys.Rev.Lett. 111 (2013) 062002 (Belle) β€’ Well described at β€’Asymmetric-energy e + e - collider Phys.Rev. D88 (2013) 032011 (BaBar) NNLO β€’ √s ∿ 10.6 GeV (Ο’(4S)) (e.g. DSS, NNFF) β€’ Ξ²Ξ³=0.65 β€’ L ∿ 500 fb -1 9

  10. The future is now: Next Generation B factory SuperKEKB β€’ Belle/KEKB recorded ~1000 fb -1 . Now have to change units on the y-axis to ab -1 Close to Belle lumi before winter shutdown ∫ 𝑀 β‰ˆ 11 𝑔𝑐 3# β€œnano-beams” are the Beam currents only a key; vertical beam size factor of two higher is 50nm at the IP than KEKB (~PEPII) β€’ ∫ 𝑀 needed to map out fully differential π‘’πœ of polarized FF β€’ πœ„ , flavor dependence for di-hadrons β€’ π‘ž + , 𝑨, 𝑨 d,e for Ξ› (also correction for feed-down needs statistics)

  11. Belle II Detector (comp. to Belle) 11

  12. 2019: First Collisions in Phase 3, the Physics Run Clear signals for B à J/ψ X in ~1/2 of Phase 3 data.

  13. Collins FFs IN 𝑓 2 𝑓 3 β€’ First non-zero independent measurement of the Collins effect for pion pairs in e + e - annihilation by Belle Collaboration @ √s ∼ 10.6 GeV ( PRL 111,062002(2008), PRD 88,032011(2013) ) leads to first extraction of transversity (Phys.Rev. D75 (2007) 054032 ) from SIDIS and e+e- j 2 β€’ Confirmed by BaBar @ √s ∼ 10.6 GeV ( PRD 90,052003 (2014); p + PRD 92,111101(R)(2015) for KK and KΟ€ ) z 2 β€’ Measured at BESIII @ √s = 3.65 GeV ( PRL 116,42001(2016) ) q 2 q 1 p - j 1 quark-2 quark-1 z 1 spin spin z 1,2 relative pion pair momenta Cross-section 𝑓 2 𝑓 3 β†’ β„Ž # β„Ž W β„Ž # β„Ž W + π‘Œ . 𝐸 # . + 𝐼 # . 𝐼 # . cos 𝜚 # + 𝜚 W ∝ 𝐸 # β€’ Access spin dependence and p T dependence (convolution or in jet) without PDF complication β€’ Made possible by B-factory luminosities 13

  14. New: P t dependence of charged pions from Belle BaBar U nlike/ L ikesign Ratios to cancel acceptance effects Preliminary Unlike: fav*fav+dis*dis Like: fav*dis β€’ Trend consistent with BaBar β€’ Direct comparison difficult due to different correction schemes (thrust vs π‘Ÿp π‘Ÿ βˆ’ axis) 14

  15. <latexit sha1_base64="Fmfzj0FecUk1cyEGHeimBsewYTk=">ACV3icbZHNS8MwGMbTbuqcX5sevRSHIoyNdgp6EYZePHiYw6mwbiPN0hlM05Kkwgj9J8XL/hUvmn7g13wh4cnveUOSJ15EiZC2vTDMUnlda2yXt3Y3NreqdV370UYc4QHKQhf/SgwJQwPJBEUvwYcQwDj+IH7/kq9R9eMBckZHdyHuFRAGeM+ARBqdGkxtwAyicEqeonE+V0krFyIzK2kwvX5xCp/ljZbhTkXqKXN7k6KvysOZ2azS/ZSjLc/MatHFerk1rDbtZWcvCKUQDFNWb1F7daYjiADOJKBRi6NiRHCnIJUEUJ1U3FjiC6BnO8FBLBgMsRirLJbEONZlafsj1YNLK6M8dCgZCzANPd6YpiL9eCv/zhrH0z0eKsCiWmKH8ID+mlgytNGRrSjhGks61gIgTfVcLPUGdl9RfkYbg/H3ysrjvtJ2Tduf2tNG9LOKogH1wAI6BA85AF1yDHhgABN7Au1EysbC+DBXzUreahrFnj3wq8z6J+/fs64=</latexit> <latexit sha1_base64="Zyi8lNnW0azNoYQ5/Ck3gcBksc=">ACVXicbZHNS8MwGMbTOuecH6t69FIcijAc7RT0Igy9ePAwh/uAdRtplm5h6QdJKozQf3IX8T/xIpiuFXTzhcCT3/O+JHniRpRwYVkfmr5V2C7ulHbLe/sHhxXj6LjLw5gh3EhDVnfhRxTEuCOILifsQw9F2Ke+78MfV7b5hxEgavYhHhoQ+nAfEIgkKhsUEdH4oZglS2k7G0G8lIOljA5N7xGESynW2dyM/cRJHnTF3kLZlPRrXaj7pK5ArkNCUZHhtVq26tytwUdi6qIK/W2Fg6kxDFPg4EopDzgW1FYighEwRnJSdmOMIojmc4oGSAfQxH8pVKol5rsjE9EKmViDMFf09IaHP+cJ3VWeaAV/3UvifN4iFdzeUJIhigQOUHeTF1BShmUZsTgjDSNCFEhAxou5qohlUWQn1EWUVgr3+5E3RbdTt63rj5abafMjKIFTcAYugQ1uQRM8gRboASW4FPTNF17170gl7MWnUtnzkBf0qvfAO7hbRl</latexit> New: 𝜌 r /πœƒ from Belle = Ο€ 0 Ο€ + + Ο€ 0 Ο€ βˆ’ 12 = R 0 Β± R Ο€ 0 12 Ο€ + Ο€ + + Ο€ βˆ’ Ο€ βˆ’ R L 12 12 = R Ξ· Β± Ξ·Ο€ + + Ξ·Ο€ βˆ’ 12 R Ξ· = Ο€ + Ο€ + + Ο€ βˆ’ Ο€ βˆ’ R L 12 β€’ Rise with π’œ 𝟐,πŸ‘ , similar to charged pions 0.07 12 h A h 0.06 A with stat. uncertainties 12 h 0.05 A systematic uncertainties 12 0.04 0.03 0.02 1 0.01 5 0 0.4 0.5 0.6 0.7 0.8 z 1 πœƒ almost flat except large z β€’

  16. Consistency between Neutral and charged pions 0.06 12 A p 0 Preliminary 0.05 A 12 UL UC 0.04 A -A 12 12 0.03 π•πŒ βˆ’ 𝑩 πŸπŸ‘ 𝑽𝑫 (𝑱𝒕𝒑𝒕𝒒𝒋𝒐) = 𝐁 πŸπŸ‘ 0.02 0.01 0 - 0.01 0.3 0.4 0.5 0.6 0.7 0.8 z 1 16

  17. Measuring transverse spin dependent di-Hadron Correlations In unpolarized e + e - Annihilation into Quarks Interference effect in e + e - electron quark fragmentation will lead to azimuthal asymmetries in di-hadron correlation measurements! - + p p - + ( ) p p ( ) j 2 j 1 q 1 Experimental requirements: z 2 q 2 z 1 Β§ Small asymmetries Γ¨ quark-2 quark-1 very large data sample! spin spin Β§ Good particle ID to high momenta. z 1,2 relative pion pair momenta Β§ Hermetic detector positron 17

  18. First measurement of Interference Fragmentation ∠ ( π‘Ÿ ↑ β†’ 𝜌 2 𝜌 3 ) Function 𝐼 # arXiv:1104.2425 AV, RS et. al, PRL 107, 072004(2011) a 12 Β΅ H 1< β€’ H 1< 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend