pedestrian models based on rational behaviour
play

Pedestrian Models Based on Rational Behaviour CROWDS: Models and - PowerPoint PPT Presentation

Pedestrian Models Based on Rational Behaviour CROWDS: Models and Control Centre International de Rencontres Mathmatiques Rafael Bailo , Jos A. Carrillo, Pierre Degond 3 rd June 2019 Department of Mathematics, Imperial College London 1


  1. Pedestrian Models Based on Rational Behaviour CROWDS: Models and Control Centre International de Rencontres Mathématiques Rafael Bailo , José A. Carrillo, Pierre Degond 3 rd June 2019 Department of Mathematics, Imperial College London 1

  2. Background

  3. Multi-Agent Systems • N discrete, indistinguishable agents. • Agents characterised by position-velocity pair ( x i , v i ) . • Simple interaction rules — attraction, repulsion, alignment. 2

  4. Multi-Agent Systems • CGI flocking — Reynolds (1987). • Pedestrian dynamics — Helbing and Molnár (1995). • Milling in fish — D’Orsogna et al. (2006). • Opinion dynamics — Cucker and Smale (2007a,b). • Predator-prey dynamics — Chen and Kolokolnikov (2014). 3

  5. A Model with Rational Behaviour

  6. Two-Step Dynamics Originally from Degond et al. (2013); Moussaïd et al. (2011): I. Perception Phase: visual stimuli informs agents of their environment. II. Decision Phase: agents react to information by adjusting their paths. 4

  7. Perception Phase — Heuristics v j x j v i x i 5

  8. Distance between i and j : � 2 . � � d 2 i , j ( t ) = � x j + v j t − x i − v i t Time to interaction of τ i , j : � � � � x j − x i v j − v i · � � d i , j τ i , j = arg min = − . � 2 � � � v j − v i t ∈ R Point of closest approach p i , j : � � � � � p i , j − p j , i � = min � x i ( t ) − x j ( t ) and p i , j = x i + v i τ i , j . � t ∈ R 6

  9. Distance to interaction D i , j : � � � � x j − x i v j − v i · � � D i , j = � p i , j − x i � = τ i , j � v i � = − � v i � . � 2 � � � v j − v i Distance of closest approach C i , j : � 1 � �� 2 �� � � x j − x i v j − v i 2 · � 2 − � � � � C i , j = � p i , j − p j , i � x j − x i � = . � 2 � � � v j − v i Note τ i , j ≡ τ j , i and C i , j ≡ C j , i . 7

  10. v j x j (visual horizon) 0 ≤ D i , j ≤ L Distance to Interaction v i p i , j x i p j , i (personal space) 0 ≤ C i , j ≤ R Distance of Closest Approach 8

  11. v j x j (visual horizon) 0 ≤ D i , j ≤ L Distance to Interaction v i p i , j x i p j , i (personal space) 0 ≤ C i , j ≤ R Distance of Closest Approach 9

  12. Perception Phase — Assumptions on the Heuristics Agent i reacts to j if: • τ i , j > 0 and D i , j > 0. • D i , j < L , the visual horizon. • C i , j < R , the personal space. • Cone of vision: � � x j − x i · v i � � v i � > cos( ϑ/ 2 ) . � � � x j − x i 10

  13. Perception Phase — Global Heuristics Global distance to interaction D i : � � D i = min D i , j for perceived j . j Global distance of closest approach C i : C i = C i , j for j that minimises D i , j . 11

  14. Decision Phase • Construct a decision function Φ i from the heuristics. • Choose the optimal velocity at every step: x n + 1 = x n i + v n v n Φ n i ∆ t , i ( v ) . i = arg min i v 12

  15. Possible paths 13

  16. Decision Phase — Gradient Formulation Alternatively, descend the gradient of Φ : dx i dv i dt = v i , dt = −∇ v Φ i ( v i ) . 14

  17. Decision Function Φ i ( v ) = k i � 2 . 2 � D i v − Lv ∗ 15

  18. Towards a High Density Model

  19. Modified Decision Function Φ S , i ( v ) = k b + k s i � 2 � 2 � v � 2 − � v ∗ i � 2 � 2 R 2 � D i C i v − LRv ∗ . 2 � �� � � �� � Speed control Collision avoidance 16

  20. Environmental Coercion Include high-density environmental effects: dx i dv i dt = v i , dt = −∇ v Φ S , i ( v i ) + ǫ i . 17

  21. I. Repulsion as Anticipation: x j − x i � �� � �� ǫ f , i ( x i ) = f � x j − x i � , � � � x j − x i j � = i dr ( r ) , ( r ) = D exp {− ar 2 } where f ( r ) = dV . r p II. Friction and the Fundamental Diagram: ǫ µ, i ( x i , v i ) = − µ ( ρ i ) v i , Cone of vision where µ ( ρ ) ∝ ρ max / ( ρ max − ρ ) . 18

  22. Simulations rationalbehaviour.rafaelbailo.com 19

  23. Outlook • Empirical calibration of the models. • Data-driven fundamental diagram. • Live simulations and optimal control of crowds. • Mesoscopic and macroscopic models. 20

  24. Pedestrian Models Based on Rational Behaviour CROWDS: Models and Control Centre International de Rencontres Mathématiques Rafael Bailo , José A. Carrillo, Pierre Degond 3 rd June 2019 Department of Mathematics, Imperial College London 21

  25. References i References Chen, Y. and T. Kolokolnikov 2014. A minimal model of predator-swarm interactions. Journal of The Royal Society Interface , 11(94):20131208–20131208. Cucker, F. and S. Smale 2007a. Emergent Behavior in Flocks. IEEE Transactions on Automatic Control , 52(5):852–862. 22

  26. References ii Cucker, F. and S. Smale 2007b. On the mathematics of emergence. Japanese Journal of Mathematics , 2(1):197–227. Degond, P., C. Appert-Rolland, M. Moussaïd, J. Pettré, and G. Theraulaz 2013. A Hierarchy of Heuristic-Based Models of Crowd Dynamics. Journal of Statistical Physics , 152(6):1033–1068. D’Orsogna, M. R., Y. L. Chuang, A. L. Bertozzi, and L. S. Chayes 2006. Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse. Physical Review Letters , 96(10):104302. Helbing, D. and P. Molnár 1995. Social force model for pedestrian dynamics. Physical Review E , 51(5):4282–4286. 23

  27. References iii Moussaïd, M., D. Helbing, and G. Theraulaz 2011. How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences , 108(17):6884–6888. Reynolds, C. W. 1987. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics , 21(4):25–34. 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend