partial wave analysis of eta meson photoproduction using
play

Partial wave analysis of eta meson photoproduction using fixed-t - PowerPoint PPT Presentation

Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30th August 2017, Boppard Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations Kirill Nikonov Johannes Gutenberg


  1. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations Kirill Nikonov Johannes Gutenberg University, Mainz. 30’th August 2017, Boppard 1

  2. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Overview • Motivation and goals • Theory and formalism • η MAID model • Results and conclusion 2

  3. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Resonance spectrum in photoproduction E W/GeV /GeV γ 2 ** * * ** 2 ** ** ** ** * **** 1.5 *** **** ** ** ηΝ **** ** ** MAMI � energy range ** * ωΝ **** *** **** **** **** *** 1 **** **** ΚΛ / ΚΣ *** **** **** 1.5 ηΝ **** 0.5 ∆ **** π Ν N 1 **** 0 1/2+ 5/2+ 1/2- 3/2- 5/2- 3/2+ 7/2+ 3

  4. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Total cross section data from Mainz for γp → ηp . Resonance contribution K + Σ o new data from K o Σ + 10 P 11 (1710) A2/MAMI, 2017 (PRL) 15 0.4 ω S 11 (1535) D 15 (1675) η ‘ σ [µ b ] σ [µ b ] 10 D 13 (1520) 0.2 5 P 13 (1720) S 11 (1650) bg Regg F 15 (1680) bg D 13 (1700) 0 0 1.5 1.6 1.7 1.8 1.5 1.6 1.7 1.8 1 1.5 1.6 1.7 1.8 1.9 2 W [ GeV ] W [ GeV ] W [ GeV ] 4

  5. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Motivation and goals Motivation: • Study nucleon resonances using isobar model ( η MAID). • By construction η MAID is non analytic. • Apply fixed-t dispersion relations. I.Aznauryan in [Phys.Rev. C68 (2003) 065204] Goals: • Fit the new data. Resonance parameters used as fitting parameters. • Obtain masses, widths, branching ratios, e.t.c in an improved and less model dependent way. 5

  6. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Kinematics of γp → ηp Consider kinematical quantities independent of the reference frame. γ ( k ) + p ( p i ) → η ( q ) + p ( p f ) (1) Variables in brackets denote the 4-momenta of the participating particles. k - photon, p i , p f - target and recoil proton, i and f denote initial and final states q - meson ( η ) Mandelstam variables: ( p i + k ) 2 = ( q + p f ) 2 , s = ( q − k ) 2 = ( p f − p i ) 2 , t = ( p i − q ) 2 = ( p i − q ) 2 . u = (2) s + t + u = 2 m p + m η √ s - total energy, t - momentum transfer squared from the photon to the meson . 6

  7. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Mandelstam plane for γp → ηp Π N Η N Η 'N 0.0 t � GeV 2 � Crossing symmetrical variable. � 0.5 ν = s − u (3) 4 m p � 1.0 Crossing EVEN f ( − ν ) = f ( ν ) Crossing ODD f ( − ν ) = − f ( ν ) � 1.5 0.0 0.5 1.0 1.5 Ν � GeV � 7

  8. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Invariant and CGLN amplitudes Chew,Golberger,Low,Nambu - CGLN [Phys.Rev.106(1957) 1337-1344]. γp → ηp can be described by 4 amplitudes, the matrix element in c.m. takes the form: 4 i u ( p i ) = − 4 πW ∑ A i ( ν, t ) ε µ M µ χ † t γ,η = ¯ u ( p f ) f F χ i , (4) M N i =1 − 1 M µ 2 iγ 5 ( γ µ k − kγ µ ) , = 1 ( ) P µ k · ( q − 1 2 k ) − ( q − 1 2 k ) µ k · P M µ = 2 iγ 5 , 2 − iγ 5 ( γ µ k · q − kq µ ) , M µ = 3 − 2 iγ 5 ( γ µ k · P − kP µ ) − 2 M N M µ M µ = 1 , (5) 4 where k = k µ γ µ , P µ = ( p µ i + p µ f ) / 2 . σ × ˆ σ · ˆ F = i ( ⃗ σ · ˆ ϵ ) F 1 + ( ⃗ σ · ˆ q ) ( ⃗ k ) · ˆ ϵ F 2 + i (ˆ ϵ · ˆ q ) ( ⃗ k ) F 3 + i (ˆ ϵ · ˆ q )( ⃗ σ · ˆ q ) F 4 (6) where ϵ µ = ( ϵ 0 ,⃗ ϵ · ⃗ ϵ ) and ⃗ k = 0 . Both types of amplitudes are used further. 8

  9. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Truncated partial wave expansion of CGLN amplitudes CGLN amplitudes can be expanded in terms of the partial waves and an angle. ℓ max ∑ [( ℓM ℓ + + E ℓ + ) P ′ ℓ +1 ( x ) + (( ℓ + 1) M ℓ − + E ℓ − ) P ′ F 1 ( W, x ) = ℓ − 1 ( x )] , ℓ =0 ℓ max ∑ [( ℓ + 1) M ℓ + + ℓM ℓ − ] P ′ F 2 ( W, x ) = ℓ ( x ) , ℓ =1 ℓ max ∑ [( E ℓ + − M ℓ + ) P ′′ ℓ +1 ( x ) + ( E ℓ − + M ℓ − ) P ′′ F 3 ( W, x ) = ℓ − 1 ( x )] , ℓ =1 ℓ max ∑ [ M ℓ + − E ℓ + − M ℓ − − E ℓ − ] P ′′ F 4 ( W, x ) = ℓ ( x ) . (7) ℓ =2 where ℓ is an orbital angular momentum of the ηN system, x = cos θ is the cosine of the scattering angle, M ℓ ± , E ℓ ± are multipoles, ” ± ” → J = ℓ ± 1 / 2 . Consider example: E 0+ : ℓ = 0 , J = 0 + 1 / 2 , P = − ( − 1) ℓ = − 1 9

  10. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Some important resonances in η photoproduction ℓ J P J = ℓ ± 1 / 2 Resonance Multipole N ( mass ) J P N (1535) 1 / 2 − E 0+ 1 / 2 = 0 + 1 / 2 0 1/2 - N (1650) 1 / 2 − E 0+ 1 / 2 = 0 + 1 / 2 0 1/2 - N (1440) 1 / 2 + M 1 − 1 / 2 = 1 − 1 / 2 1 1/2 + N (1710) 1 / 2 + M 1 − 1 / 2 = 1 − 1 / 2 1 1/2 + N (1720) 3 / 2 + E 1+ , M 1+ 3 / 2 = 1 + 1 / 2 1 3/2 + N (1520) 3 / 2 − E 2 − , M 2 − 3 / 2 = 2 − 1 / 2 2 3/2 - N (1700) 3 / 2 − E 2 − , M 2 − 3 / 2 = 2 − 1 / 2 2 3/2 - N (1675) 5 / 2 − E 2+ , M 2+ 5 / 2 = 2 + 1 / 2 2 5/2 - N (1680) 5 / 2 + E 3 − , M 3 − 5 / 2 = 3 − 1 / 2 3 5/2 + 10

  11. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Constituents of the η MAID isobar model γ η γ η γ η ρ, ω N ∗ p p = p p γ γ η p p p p p p 11

  12. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Resonance parametrization of the η MAID isobar model Multipoles M ℓ ± ( E ℓ ± , M ℓ ± ) have Breit Wigner form: M R Γ tot ( W ) M ℓ ± ( W ) = ¯ M ℓ ± f γN ( W ) R − W 2 − iM R Γ tot ( W ) f ηN ( W ) C ηN , (8) M 2 ¯ M ℓ ± is related to the photo decay amplitudes listed in PDG. Γ tot ( W ) is the energy dependent width. f γN ( W ) and f ηN ( W ) are vertex functions. 12

  13. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Fit results for the total cross section with an isobar model A2MAMI ● K + Σ o CBELSA/TAPS-09 10 ● K o Σ + ω η ‘ σ [µ b ] 1 -1 10 1.6 1.8 2 2.2 2.4 2.6 2.8 W [ GeV ] η MAID2003: solid - full model, dashed - background ( ρ + ω + born ), η MAID2015: solid - full model, dashed - background ( ρ + ω + born ) 13

  14. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard � ������������ �������������������������������������� ������������������������������ ��� � Fit results for the differential cross section with an isobar model ��!��������!��%�������� ���� ��� %��������� 14

  15. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard ��� ������������ �����������������$ ������$��� ��� Fit results for T and F with an isobar model � ���������� ����������������� η MAID2003, η MAID2015 T - polarized target, F - polarized beam and target. 15

  16. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Fixed-t dispersion relations Q:How to improve? Problem of an isobar model:non analytic. BUT: Invariant amplitudes are analytic functions of complex variables, one can derive dispersion relations at a fixed value of t . Crossing even: ∫ ∞ dν ′ ν ′ Im A i ( ν ′ , t ) ( ν, t ) + 2 A pole Re A i ( ν, t ) = π P , for i = 1 , 2 , 4 (9) ν ′ 2 − ν 2 i ν thr ( t ) Crossing odd: ∫ ∞ dν ′ Im A i ( ν ′ , t ) ( ν, t ) + 2 ν A pole Re A i ( ν, t ) = , for i = 3 π P (10) ν ′ 2 − ν 2 i ν thr ( t ) 16

  17. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Real part of A1 ReA1 � GeV � 2 � , t � � 0.5GeV 2 ReA1 0.0 � 0.5 � 1.0 Re � Η MAID � � 1.5 Re � Η MAID � calculated from the Im � Η MAID � � 2.0 � 2.5 � 3.0 W � MeV � 1600 1800 2000 2200 2400 17

  18. Partial wave analysis of eta meson photoproduction using fixed-t dispersion relations 30’th August 2017, Boppard Integrating regions Π N Η N Η 'N ImA1 � GeV � 2 � , t � � 0.5GeV 2 0.0 ImA1 Π N Η N Η 'N t � GeV 2 � � 0.5 10 Η MAID Η MAID � 1.0 Η MAID 5 � 1.5 W � MeV � 0.0 0.5 1.0 1.5 1400 1600 1800 2000 Ν � GeV � 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend