partial trace regression and low rank kraus decomposition
play

Partial Trace Regression and Low-Rank Kraus Decomposition Hachem - PowerPoint PPT Presentation

Partial Trace Regression and Low-Rank Kraus Decomposition Hachem Kadri 1 , St ephane Ayache 1 , Riikka Huusari 2 , Alain Rakotomamonjy 3 , 4 , Liva Ralaivola 4 1 Aix-Marseille University, CNRS, LIS, Marseille, France 2 Helsinki Institute for


  1. Partial Trace Regression and Low-Rank Kraus Decomposition Hachem Kadri 1 , St´ ephane Ayache 1 , Riikka Huusari 2 , Alain Rakotomamonjy 3 , 4 , Liva Ralaivola 4 1 Aix-Marseille University, CNRS, LIS, Marseille, France 2 Helsinki Institute for Information Technology, Aalto University, Espoo, Finland 3 Universit´ e Rouen Normandie, LITIS, Rouen, France 4 Criteo AI Lab, Paris

  2. Trace Regression � � B ⊤ y = tr ∗ X + ǫ Generalization of linear regression to matrix input X → Spatio-temporal data, covariance descriptors, . . . Output y is a real number H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 2/17

  3. Trace Regression � � B ⊤ y = tr ∗ X + ǫ Generalization of linear regression to matrix input X → Spatio-temporal data, covariance descriptors, . . . Output y is a real number Low-Rank Estimation [Koltchinskii et al., 2011] ℓ � �� 2 + λ � B � 1 � � B ⊤ X i � B = arg min y i − tr B i =1 H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 2/17

  4. Trace Regression � � B ⊤ y = tr ∗ X + ǫ Generalization of linear regression to matrix input X → Spatio-temporal data, covariance descriptors, . . . Output y is a real number PSD-contrained Estimation [Slawski et al., 2015] � �� 2 ℓ � � B ⊤ X i � B = arg min y i − tr B ∈ S + i =1 p H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 2/17

  5. Trace Regression � � B ⊤ y = tr ∗ X + ǫ Generalization of linear regression to matrix input X → Spatio-temporal data, covariance descriptors, . . . Output y is a real number Relevant to: → Matrix completion → Phase retrieval → Quantum state tomography → . . . H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 2/17

  6. Trace Regression � � B ⊤ y = tr ∗ X + ǫ Generalization of linear regression to matrix input X → Spatio-temporal data, covariance descriptors, . . . Output y is a real number Relevant to: → Matrix completion �P Ω ( B ∗ ) − P Ω ( B ) � 2 s.t. rank( B ) = r arg min B H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 2/17

  7. Trace Regression � � B ⊤ y = tr ∗ X + ǫ Generalization of linear regression to matrix input X → Spatio-temporal data, covariance descriptors, . . . Output y is a real number Relevant to: → Matrix completion � � P Ω ( B ∗ ) ij − tr( B ⊤ E ij ) � 2 s.t. rank( B ) = r arg min B ( i,j ) ∈ Ω H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 2/17

  8. Partial Trace Regression Generalizes Trace Regression to the case when both inputs and outputs are matrices . Domain adaptation EEG data Figure from [Liu et al., 2019] Inspiration: partial trace , CP maps and Kraus decomposition in quantum computing Covariance matrix Figure from [Williamson et al., 2012] H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 3/17

  9. Notational Conventions M p := M p ( R ) the space of all p × p real matrices M p ( M q ) the space of p × p block matrices whose i, j entry is an element of M q L ( M p , M q ) the space of linear maps from M p to M q H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 4/17

  10. From Trace to Partial Trace Trace   . . . • • • •   . . .  • • • •    tr = • . . . . ...   . . . . . . . .   . . . • • • • H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 5/17

  11. From Trace to Partial Trace Trace of a block matrix   . . . . . . • • • • • •   . . . . . . ... ...  . . . . . .  . . . . . . . . .     . . . . . .  • • • • • •        . . .  . . .  . . . tr = •            . . . . . .  • • • • • •   . . . . . . ... ...   . . . . . . . . .  . . . . . .  . . . . . . • • • • • • H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 5/17

  12. From Trace to Partial Trace Partial-trace   . . . . . . • • • • • •   . . . . . . ... ... . . . . . .  . . .  . . . . . .     . . . . . .  • • • • • •        . . . • • •   . . . . . .  . . .   ...  . . . . . . tr m =     . . .     . . . • • •      . . . . . .  • • • • • •   . . . . . .  ... ...  . . . . . . . . .  . . . . . .  . . . . . . • • • • • • The partial trace operation applied to m × m -blocks of a qm × qm matrix gives a q × q matrix as an output. H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 5/17

  13. Partial Trace Regression � � A ∗ XB ⊤ Y = tr m + ǫ ∗ Matrix Input X ∈ M p and Matrix Output Y ∈ M q A ∗ , B ∗ ∈ M qm × p are the unknown parameters of the model We recover the trace regression model when q = 1 Learning the Model Parameters Our solution: Kraus representation of completely positive maps H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 6/17

  14. Positive and Completely Positive Maps [Bhatia, 2009] Positive maps Φ ∈ L ( M p , M q ) is positive if for all M ∈ S + p , Φ( M ) ∈ S + q H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 7/17

  15. Positive and Completely Positive Maps [Bhatia, 2009] m-Positive maps Φ ∈ L ( M p , M q ) is m m m -positive if Φ m : M m ( M p ) → M m ( M q ) defined as     Φ( A 11 ) Φ( A 12 ) A 11 A 12 . . . . . . . .  ...   ...  . . Φ m  :=    . . A m 1 A mm Φ( A m 1 ) Φ( A mm ) is positive. H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 7/17

  16. Positive and Completely Positive Maps [Bhatia, 2009] Completely positive maps Φ is completely positive if it is m -positive for any m ≥ 1 H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 7/17

  17. A Positive But Not Completely Positive Map Example: the transpose map Define Φ : M 2 → M 2 by Φ( A ) = A ⊤ . Then Φ 1 ≥ ≥ ≥ 0 but Φ 2 � � � 0 . Φ       1 0 0 1 1 0 0 0         0 0 0 0 0 0 1 0       = Φ 2             0 0 0 0 0 1 0 0   1 0 0 1 0 0 0 1 H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 8/17

  18. A Completely Positive Map Example Let V ∈ M q × p . Define Φ : M p → M q by Φ( A ) = V AV ⊤ . Then Φ is completely positive . �� �� � � V A 11 V ⊤ V A 12 V ⊤ A 11 A 12 Φ 2 = V A 21 V ⊤ V A 22 V ⊤ A 21 A 22 � � A 11 A 12 ( I 2 ⊗ V ⊤ ) = ( I 2 ⊗ V ) A 21 A 22 H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 9/17

  19. Stinespring Representation Stinespring’s Theorem 1955 � AXA ⊤ � Let Φ ∈ L ( M p , M q ) . Φ writes as Φ( X ) = tr m for some A ∈ M qm × p if and only if Φ is completely positive . Partial trace regression ↔ Learning a completely positive map Partial trace version of the PSD-contrained trace regression Efficient optimization via Kraus decomposition H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 10/17

  20. Kraus Representation Choi’s Theorem 1975, Kraus Decomposition 1971 Let Φ ∈ L ( M p , M q ) be a completely positive linear map. Then there exist A j ∈ M q × p , 1 ≤ j ≤ r , with r ≤ pq such that r � A j XA ⊤ ∀ X ∈ M p , Φ( X ) = j . j =1 Learning a completely positive map ↔ Finding a Kraus decomposition Small values of r correspond to low-rank Kraus representation H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 11/17

  21. Back to Partial Trace Regression Low-Rank Kraus Estimation l r � � � Y i , � A j X i A ⊤ arg min ℓ j A j ∈ M q × p i =1 j =1 H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 12/17

  22. Back to Partial Trace Regression Generalization Bound F = { Φ : M p → M q : Φ is completely positive and its Kraus rank is equal to r } Under some assumptions on ℓ , for any δ > 0 , with probability at least 1 − δ , the following holds for all h ∈ F , � � � � � � pqr log( 8 epq 1 r ) log( l � log pqr ) δ R ( h ) ≤ ˆ R ( h ) + γ + γ l 2 l H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 12/17

  23. Back to Matrix Completion (Block) PSD Matrix Completion Let Φ : M p → M q be a linear mapping. Then the following conditions are equivalent: 1 Φ is completely positive . 2 The block matrix M ∈ M p ( M q ) defined by M ij = Φ( E ij ) , 1 ≤ i, j ≤ p, is positive , where E ij are the matrix units of M p . H. Kadri & al., Partial Trace Regression and Low-Rank Kraus Decomposition, 13/17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend