parametrization
play

Parametrization Surface Integrals Dr. Allen Back Nov. 17, 2014 - PowerPoint PPT Presentation

Parametrization V1 Surface Parametriza- tion Parametrization Surface Integrals Dr. Allen Back Nov. 17, 2014 Paraboloid z = x 2 + 4 y 2 Parametrization V1 Surface Parametriza- tion Surface The graph z = F ( x , y ) can always be


  1. Parametrization V1 Surface Parametriza- tion Parametrization Surface Integrals Dr. Allen Back Nov. 17, 2014

  2. Paraboloid z = x 2 + 4 y 2 Parametrization V1 Surface Parametriza- tion Surface The graph z = F ( x , y ) can always be parameterized by Integrals Φ( u , v ) = < u , v , F ( u , v ) > .

  3. Paraboloid z = x 2 + 4 y 2 Parametrization V1 Surface Parametriza- tion The graph z = F ( x , y ) can always be parameterized by Surface Integrals Φ( u , v ) = < u , v , F ( u , v ) > . Parameters u and v just different names for x and y resp.

  4. Paraboloid z = x 2 + 4 y 2 Parametrization V1 Surface Parametriza- tion The graph z = F ( x , y ) can always be parameterized by Surface Integrals Φ( u , v ) = < u , v , F ( u , v ) > . Use this idea if you can’t think of something better.

  5. Paraboloid z = x 2 + 4 y 2 Parametrization The graph z = F ( x , y ) can always be parameterized by V1 Φ( u , v ) = < u , v , F ( u , v ) > . Surface Parametriza- tion Surface Integrals

  6. Paraboloid z = x 2 + 4 y 2 The graph z = F ( x , y ) can always be parameterized by Parametrization V1 Φ( u , v ) = < u , v , F ( u , v ) > . Surface Parametriza- tion Surface Integrals Note the curves where u and v are constant are visible in the wireframe.

  7. Paraboloid z = x 2 + 4 y 2 Parametrization V1 Surface Parametriza- tion Surface Integrals A trigonometric parametrization will often be better if you have to calculate a surface integral.

  8. Paraboloid z = x 2 + 4 y 2 Parametrization V1 Surface Parametriza- tion A trigonometric parametrization will often be better if you have Surface Integrals to calculate a surface integral. Φ( u , v ) = < 2 u cos v , u sin v , 4 u 2 > .

  9. Paraboloid z = x 2 + 4 y 2 Parametrization A trigonometric parametrization will often be better if you have V1 to calculate a surface integral. Surface Parametriza- Φ( u , v ) = < 2 u cos v , u sin v , 4 u 2 > . tion Surface Integrals

  10. Paraboloid z = x 2 + 4 y 2 Parametrization A trigonometric parametrization will often be better if you have V1 to calculate a surface integral. Surface Parametriza- Φ( u , v ) = < 2 u cos v , u sin v , 4 u 2 > . tion Surface Integrals Algebraically, we are rescaling the algebra behind polar coordinates where x = r cos θ y = r sin θ leads to r 2 = x 2 + y 2 .

  11. Paraboloid z = x 2 + 4 y 2 Parametrization A trigonometric parametrization will often be better if you have V1 to calculate a surface integral. Surface Parametriza- Φ( u , v ) = < 2 u cos v , u sin v , 4 u 2 > . tion Surface Integrals Here we want x 2 + 4 y 2 to be simple. So x = 2 r cos θ y = r sin θ will do better.

  12. Paraboloid z = x 2 + 4 y 2 A trigonometric parametrization will often be better if you have Parametrization to calculate a surface integral. V1 Surface Φ( u , v ) = < 2 u cos v , u sin v , 4 u 2 > . Parametriza- tion Surface Integrals Here we want x 2 + 4 y 2 to be simple. So x = 2 r cos θ y = r sin θ will do better. Plug x and y into z = x 2 + 4 y 2 to get the z-component.

  13. Parabolic Cylinder z = x 2 Parametrization V1 Surface Parametriza- tion Surface Integrals Graph parametrizations are often optimal for parabolic cylinders.

  14. Parabolic Cylinder z = x 2 Parametrization V1 Surface Parametriza- tion Surface Integrals Φ( u , v ) = < u , v , u 2 >

  15. Parabolic Cylinder z = x 2 Parametrization Φ( u , v ) = < u , v , u 2 > V1 Surface Parametriza- tion Surface Integrals

  16. Parabolic Cylinder z = x 2 Parametrization V1 Φ( u , v ) = < u , v , u 2 > Surface Parametriza- tion Surface Integrals One of the parameters (v) is giving us the “extrusion” direction. The parameter u is just being used to describe the curve z = x 2 in the zx plane.

  17. Elliptic Cylinder x 2 + 2 z 2 = 6 Parametrization V1 Surface Parametriza- tion Surface Integrals The trigonometric trick is often good for elliptic cylinders

  18. Elliptic Cylinder x 2 + 2 z 2 = 6 Parametrization V1 Surface Parametriza- tion Surface Integrals √ √ √ √ √ Φ( u , v ) = < 3 · 2 cos v , u , 3 sin v > = < 6 cos v , u , 3 sin v >

  19. Elliptic Cylinder x 2 + 2 z 2 = 6 Parametrization V1 Surface Parametriza- tion Surface Integrals √ √ Φ( u , v ) = < 6 cos v , u , 3 sin v >

  20. Elliptic Cylinder x 2 + 2 z 2 = 6 Parametrization √ √ Φ( u , v ) = < 6 cos v , u , 3 sin v > V1 Surface Parametriza- tion Surface Integrals

  21. Elliptic Cylinder x 2 + 2 z 2 = 6 Parametrization V1 Surface Parametriza- tion √ √ Φ( u , v ) = < 6 cos v , u , 3 sin v > Surface Integrals

  22. Elliptic Cylinder x 2 + 2 z 2 = 6 Parametrization √ √ Φ( u , v ) = < 6 cos v , u , 3 sin v > V1 Surface Parametriza- tion Surface Integrals What happened here is we started with the polar coordinate idea x = r cos θ z = r sin θ but noted that the algebra wasn’t right for x 2 + 2 z 2 so shifted to √ x = 2 r cos θ z = r sin θ

  23. Elliptic Cylinder x 2 + 2 z 2 = 6 Parametrization V1 √ √ Φ( u , v ) = < 6 cos v , u , 3 sin v > Surface Parametriza- tion Surface Integrals √ x = 2 r cos θ z = r sin θ makes the left hand side work out to 2 r 2 which will be 6 when √ r = 3 .

  24. Ellipsoid x 2 + 2 y 2 + 3 z 2 = 4 Parametrization V1 Surface Parametriza- tion Surface Integrals A similar trick occurs for using spherical coordinate ideas in parameterizing ellipsoids.

  25. Ellipsoid x 2 + 2 y 2 + 3 z 2 = 4 Parametrization V1 Surface Parametriza- tion A similar trick occurs for using spherical coordinate ideas in Surface Integrals parameterizing ellipsoids. √ � 4 Φ( u , v ) = < 2 sin u cos v , 2 sin u sin v , 3 cos u >

  26. Ellipsoid x 2 + 2 y 2 + 3 z 2 = 4 Parametrization √ � 4 V1 Φ( u , v ) = < 2 sin u cos v , 2 sin u sin v , 3 cos u > Surface Parametriza- tion Surface Integrals

  27. Hyperbolic Cylinder x 2 − z 2 = − 4 Parametrization V1 Surface Parametriza- tion You may have run into the hyperbolic functions Surface Integrals e x + e − x cosh x = 2 e x − e − x sinh x = 2

  28. Hyperbolic Cylinder x 2 − z 2 = − 4 Parametrization V1 Surface You may have run into the hyperbolic functions Parametriza- tion e x + e − x Surface cosh x = Integrals 2 e x − e − x sinh x = 2 Just as cos 2 θ + sin 2 θ = 1 helps with ellipses, the hyperbolic version cosh 2 θ − sinh 2 θ = 1 leads to the nicest hyperbola parameterizations.

  29. Hyperbolic Cylinder x 2 − z 2 = − 4 Parametrization V1 Surface Parametriza- Just as cos 2 θ + sin 2 θ = 1 helps with ellipses, the hyperbolic tion version cosh 2 θ − sinh 2 θ = 1 leads to the nicest hyperbola Surface Integrals parameterizations. Φ( u , v ) = < 2 sinh v , u , 2 cosh v >

  30. Hyperbolic Cylinder x 2 − z 2 = − 4 Parametrization V1 Surface Φ( u , v ) = < 2 sinh v , u , 2 cosh v > Parametriza- tion Surface Integrals

  31. Saddle z = x 2 − y 2 Parametrization V1 Surface Parametriza- tion Surface Integrals The hyperbolic trick also works with saddles

  32. Saddle z = x 2 − y 2 Parametrization V1 Surface Parametriza- tion Surface Integrals Φ( u , v ) = < u cosh v , u sinh v , u 2 >

  33. Saddle z = x 2 − y 2 Parametrization Φ( u , v ) = < u cosh v , u sinh v , u 2 > V1 Surface Parametriza- tion Surface Integrals

  34. Hyperboloid of 1 Sheet x 2 + y 2 − z 2 = 1 Parametrization V1 Surface Parametriza- tion Surface Integrals The spherical coordinate idea for ellipsoids with sin φ replaced by cosh u works well here.

  35. Hyperboloid of 1 Sheet x 2 + y 2 − z 2 = 1 Parametrization V1 Surface Parametriza- tion Surface Integrals Φ( u , v ) = < cosh u cos v , cosh u sin v , sinh u >

  36. Hyperboloid of 1 Sheet x 2 + y 2 − z 2 = 1 Parametrization V1 Surface Parametriza- tion Surface Integrals

  37. Hyperboloid of 2-Sheets x 2 + y 2 − z 2 = − 1 Parametrization V1 Surface Parametriza- tion Surface Integrals Φ( u , v ) = < sinh u cos v , sinh u sin v , cosh u >

  38. Hyperboloid of 2-Sheets x 2 + y 2 − z 2 = − 1 Parametrization V1 Surface Parametriza- tion Surface Integrals

  39. Top Part of Cone z 2 = x 2 + y 2 Parametrization V1 Surface Parametriza- tion Surface Integrals x 2 + y 2 . � So z =

  40. Top Part of Cone z 2 = x 2 + y 2 Parametrization V1 Surface Parametriza- tion x 2 + y 2 . � So z = Surface Integrals The polar coordinate idea leads to Φ( u , v ) = < u cos v , u sin v , u >

  41. Top Part of Cone z 2 = x 2 + y 2 x 2 + y 2 . � So z = Parametrization The polar coordinate idea leads to V1 Surface Φ( u , v ) = < u cos v , u sin v , u > Parametriza- tion Surface Integrals

  42. Mercator Parametrization of the Sphere Parametrization For 0 ≤ v ≤ ∞ , 0 ≤ u ≤ 2 π V1 Φ( u , v ) = ( sech ( v ) cos u , sech ( v ) sin u , tanh ( v )) . Surface Parametriza- tion Surface (Note tanh 2 ( v ) + sech 2 ( v ) = 1) Integrals

  43. Surface Integrals Parametrization Picture of � T u , � T v for a Lat/Long Param. of the Sphere. V1 Surface Parametriza- tion Surface Integrals

  44. Surface Integrals Parametrization Basic Parametrization Picture V1 Surface Parametriza- tion Surface Integrals

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend