higgs pseudo observables
play

Higgs Pseudo-Observables Sandro Uccirati KIT In collaboration with - PowerPoint PPT Presentation

HP2.3rd Firenze, 14-17 September 2010 Higgs Pseudo-Observables Sandro Uccirati KIT In collaboration with G. Passarino, C. Sturm HP2.3rd Firenze, 14-17 September 2010 S. Uccirati Page 1 HP2.3rd Firenze, 14-17 September 2010


  1. HP2.3rd – Firenze, 14-17 September 2010 Higgs Pseudo-Observables Sandro Uccirati KIT In collaboration with G. Passarino, C. Sturm HP2.3rd – Firenze, 14-17 September 2010 S. Uccirati Page 1

  2. HP2.3rd – Firenze, 14-17 September 2010 Standard Model hadronic Higgs production channels g q q g q t V t t H V V H H t V t t g q q g q t H SM Higgs production SM Higgs production 10 5 LHC TeV II 10 3 σ [ fb ] gg → h gg → h σ [ fb ] 10 4 qq → Wh qq → qqh 10 2 10 3 qq → qqh qq → Wh bb → h bb → h 10 qq → Zh gg,qq → tth 10 2 qb → qth gg,qq → tth qq → Zh TeV4LHC Higgs working group TeV4LHC Higgs working group 1 100 200 300 400 500 100 120 140 160 180 200 m h [ GeV ] m h [ GeV ] Hahn,Heinemeyer,Maltoni,Weiglein,Willenbrock [hep-ph/0607308] Gluon-fusion � largest cross section S. Uccirati Page 2

  3. 1 � b b W W Z Z HP2.3rd – Firenze, 14-17 September 2010 � t t Higgs decays in the Standard Model 0.1 � � g g b � • H → bb : H • ¯ b 0.01 BR( H ) For light Higgs, huge background W, Z � � • H → WW, ZZ : H • 0.001 s s � W, Z For heavy Higgs �� γ Z � t 0.0001 • H → γγ : H • t 100 130 160 200 300 500 700 1000 M [GeV℄ H t γ γ γ W , Φ , Φ H H W W , Φ , Φ W γ γ For Light Higgs: rare, but clean S. Uccirati Page 3

  4. HP2.3rd – Firenze, 14-17 September 2010 Problems with gauge invariance: H ( P ) → γ ( p 1 ) + γ ( p 2 ) A µν = g 3 s 2 16 π 2 ( F D δ µν + F P p µ θ 2 p ν Amplitude → 1 ) . Ward Identity: F D + p 1 · p 2 F P = 0 1+ G F M 2 � � 2 π 2 Re Σ (1) M 2 H , 0 = M 2 HH ( M 2 √ W Renormalization (Ren) → H ) H 2 F D = F (1) ⊗ (1 + Ren) + F (2) F P = F (1) ⊗ (1 + Ren) + F (2) D D P P • 2-loop level • F (2) + p 1 · p 2 F (2) ( F (1) + p 1 · p 2 F (1) + P ) ⊗ Ren � = 0 D P D � �� � � �� � γ γ Φ Φ H H Φ γ γ Φ Φ � � H W, Φ No “Re” label ∼ M H , 0 → Re S. Uccirati Page 4

  5. HP2.3rd – Firenze, 14-17 September 2010 • Unstable particles can not be • asymptotic states • Higgs production and decay are • not well defined ⇓ complete process pp → γγ + X which consists of � � Signal pp → ( gg → H → γγ ) + X Background + How to extract a pseudo-observable to be termed Higgs partial decay width into two photons which does not violate first principles? S. Uccirati Page 5

  6. HP2.3rd – Firenze, 14-17 September 2010 Higgs self-energie Σ H ( s, M 2 H , 0 ) = H s H − M 2 H , 0 + Σ H ( s H , M 2 Complex pole: H , 0 ) = 0 • gauge invariant definition • s H = µ 2 • M H , 0 real by construction H − i µ H γ H • � Dyson-resummed Higgs propagator × + × + × + ∆ H ( s ) = . . . × × × ( s − s H ) − 1 � � − 1 Π H ( s ) = Σ H ( s ) − Σ H ( s H ) = 1 + Π H ( s ) , s − s H S. Uccirati Page 6

  7. HP2.3rd – Firenze, 14-17 September 2010 Amplitude for gg → γγ : g γ g γ V V + non-resonant ggH Hγγ ∆ H g γ g γ Signal Background In general S-matrix for i → f : = V i ( s ) ∆ H ( s ) V f ( s ) + B nr S fi � � � � 1 Z − 1 / 2 Z − 1 / 2 = ( s ) V i ( s ) ( s ) V f ( s ) + B nr , H H s − s H Z H = 1 + Π H B nr = non-resonant background Expand the square brackets around s = s H S. Uccirati Page 7

  8. HP2.3rd – Firenze, 14-17 September 2010 S fi = S ( i → H c ) S ( H c → f ) + non resonant terms . s − s H where S ( i → H c ) = Z − 1 / 2 Production : ( s H ) V i ( s H ) H S ( H c → f ) = Z − 1 / 2 Decay : ( s H ) V f ( s H ) H • gauge invariant order per order in perturbation theory • • Diagrams and renormalization evaluated at the complex pole • Σ H ( s ) − Σ H ( s H ) = 1 + ∂ Σ H Z H ( s H ) = 1 + lim ∂s ( s H ) s − s H s → s H • Universal and well-defined parametrization of experimantal data • ⇒ Definition of a gauge-invariant decay width: � Γ( H c → f ) = (2 π ) 4 � � � � 2 d Φ f ( P H , { p f } ) � S ( H c → f ) 2 µ H spins S. Uccirati Page 8

  9. HP2.3rd – Firenze, 14-17 September 2010 Analytical continuation • We have diagrams with complex external squared momenta • • We must understand how is defined the physical Riemann sheet • ↓ i 0 + Feynman prescription Example: � 1 m χ = − s x (1 − x ) + m 2 − i 0 + s = ∆ − dx ln χ, 0 m 2 → µ 2 − iµγ • Complex mass: Im χ does not change sign • � s → M 2 − iM Γ • Complex s: Im χ changes sign → Problem • � γ, Γ → 0 Ampl ( s, m ) = Ampl ( M 2 , µ ) General rule: lim If Re χ < 0 and Im χ > 0 (second quadrant): Feynman prescription for lim H → 0 Im[ln χ ] = π � = = − π real masses ( µ 2 → µ 2 − i 0) γ, Γ S. Uccirati Page 9

  10. HP2.3rd – Firenze, 14-17 September 2010 • If Re χ < 0 and Im χ > 0 (second quadrant), we have to change the • definition of the log. Analytical continuation on the second Riemann sheet: move the cut on the ln( z ) → ln − ( z ) = ln( z ) − 2 i π θ ( − Re z ) θ (Im z ) ⇔ positive imaginary axis � �� � second quadrant • This changes the computation of loop functions (analytical continuation for • Li n , HPLs, etc.) • Change of the integration contour in integral representations: • • The integration contour ( x ∈ [0 , 1]) never crosses the cut of ln χ • (negative real axis), but . . . • . . . it can cross the cut of ln − χ (positive imaginary axis) → Problem • In the example this happens for M 2 ≥ 4 µ 2 & µ Γ − Mγ ≥ 0 S. Uccirati Page 10

  11. HP2.3rd – Firenze, 14-17 September 2010 General strategy in parametric space: • Diagrams → integrals of polynomial (quadratic in some variables) • to negative/non-integer power . S. Uccirati Page 11

  12. HP2.3rd – Firenze, 14-17 September 2010 General strategy in parametric space: • Diagrams → integrals of polynomial (quadratic in some variables) • to negative/non-integer power Im x contour • Pick up one variable x (quadratic): • χ = a x 2 + b x + c Im χ Re χ Re χ = 0 , Im χ = 0 → Hyperbolas | 0 1 Re x Re χ Im χ . S. Uccirati Page 12

  13. HP2.3rd – Firenze, 14-17 September 2010 General strategy in parametric space: • Diagrams → integrals of polynomial (quadratic in some variables) • to negative/non-integer power Im x contour • Pick up one variable x (quadratic): • cut χ = a x 2 + b x + c Im χ >0 Re χ Re χ = 0 , Im χ = 0 → Hyperbolas study intersections | Find the cuts ⇔ 0 1 of hyperbolas. Re x Re χ Im χ >0 . S. Uccirati Page 13

  14. HP2.3rd – Firenze, 14-17 September 2010 General strategy in parametric space: • Diagrams → integrals of polynomial (quadratic in some variables) • to negative/non-integer power Im x contour • Pick up one variable x (quadratic): • cut χ = a x 2 + b x + c Im χ >0 Re χ Re χ = 0 , Im χ = 0 → Hyperbolas study intersections Find the cuts ⇔ 0 1 of hyperbolas. Re x • Deform just the contour of x , for general • values of the others Re χ • Deformation for the general case can be • Im χ >0 easily automatized (numerically) S. Uccirati Page 14

  15. HP2.3rd – Firenze, 14-17 September 2010 Numerical effects: Notation RMRP → Real Masses and Real Momenta. The usual on-shell scheme where all masses and all Mandelstam in- variants are real. CMRP → Complex Masses and Real Momenta. The complex mass scheme ( Denner-Dittmaier-Roth-Wieders [hep-ph/0505042] ) with complex internal W and Z poles (extend- able to top complex pole) but with real, external, on-shell Higgs and with the standard LSZ wave-function renormalization. CMCP → Complex Masses and Complex Momenta. The (complete) complex mass scheme with complex internal W and Z poles and complex, external, Higgs where the LSZ procedure is carried out at the Higgs complex pole (on the second Riemann sheet). S. Uccirati Page 15

  16. HP2.3rd – Firenze, 14-17 September 2010 Numerical effects: H → gg 35 RMRP CMCP ( Γ t =0) 30 CMCP ( Γ t =13.1GeV) 25 Γ (H → gg)[MeV] 20 15 10 5 0 120 200 300 400 500 µ H [GeV] S. Uccirati Page 16

  17. HP2.3rd – Firenze, 14-17 September 2010 Numerical effects: pp → H 0.14 CMRP CMCP 0.12 0.1 H) [pb] 0.08 → (pp 0.06 σ 0.04 0.02 s = 3 TeV 0 300 320 340 360 380 400 420 440 460 480 500 [GeV] µ . H S. Uccirati Page 17

  18. HP2.3rd – Firenze, 14-17 September 2010 Numerical effects: H → γγ 140 120 100 Γ (H →γγ )[KeV] 80 60 40 RMRP 20 CMRP CMCP 0 150 200 250 300 350 400 µ H [GeV] S. Uccirati Page 18

  19. HP2.3rd – Firenze, 14-17 September 2010 Numerical effects: H → ¯ bb 0 -1 -2 -3 -4 -5 -6 RMRP CMRP CMCP -7 150 200 250 300 350 400 S. Uccirati Page 19

  20. HP2.3rd – Firenze, 14-17 September 2010 Summary • Proposal for a gauge invariant parametrization of experimental • distributions for Higgs physics • Gauge invariant definition of production cross section and decay width • • Numerical effects: negligible below t ¯ t threshold, but sizable for large M H • • Computational recipe : • Analytical continuation and contour distortion for diagrams with complex Mandelstan invariants S. Uccirati Page 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend