parametrization of psl n c representations of surface
play

Parametrization of PSL(n,C)-representations of surface group II - PowerPoint PPT Presentation

Parametrization of PSL(n,C)-representations of surface group II Yuichi Kabaya (Osaka University) Hakone, 31 May 2012 1 Review of part I S : a compact orientable surface (genus g , | S | = b , ( S ) < 0) X PSL ( S ) : the PSL(2 , C


  1. Parametrization of PSL(n,C)-representations of surface group II Yuichi Kabaya (Osaka University) Hakone, 31 May 2012 1

  2. Review of part I S : a compact orientable surface (genus g , | ∂S | = b , χ ( S ) < 0) X PSL ( S ) : the PSL(2 , C )-character variety of S In part I, we have constructed a map C 6 g − 6+2 b → X PSL ( S ) essentially considering the action of PSL(2 , C ) on C P 1 . In part II, we will construct PGL( n, C )-representations using the action on the flag manifold F n based on a work of Fock and Goncharov. This is a joint work with Xin Nie. 2

  3. Review of part I S : a compact orientable surface (genus g , | ∂S | = b , χ ( S ) < 0) X PSL ( S ) : the PSL(2 , C )-character variety of S In part I, we have constructed a map C 6 g − 6+2 b → X PSL ( S ) essentially considering the action of PSL(2 , C ) on C P 1 . In part II, we will construct PGL( n, C )-representations using the action on the flag manifold F n based on a work of Fock and Goncharov. This is a joint work with Xin Nie. 2-a

  4. PGL( n, C ) := GL( n, C ) / C ∗ , PSL( n, C ) := SL( n, C ) / { ξ | ξ n = 1 } . These are isomorphic but PGL( n, C ) is convenient for our ar- guments. Flag A (full) flag in C n is a sequence of subspaces { 0 } = V 0 � V 1 � V 2 � · · · � V n = C n We denote the set of all flags by F n . GL( n, C ) and PGL( n, C ) act on F n from the left.     ∗ · · · ∗         F n ∼ . ... .   Fact = GL( n, C ) /B where B = .         O ∗ 3

  5. We represent X ∈ GL( n, C ) by n column vectors: ( x n ) ( x i ∈ C n ) x 1 x 2 · · · X = . An upper triangular matrix acts as   b 11 · · · b 1 n ( b 1 n x 1 + · · · + b nn x n )   . b 11 x 1 b 12 x 1 + b 22 x 2 . . . ... .   X .  =  O b nn By setting X i = span C { x 1 , . . . , x i } , we obtain a map GL( n, C ) /B → F n . This is bijective. We call an element of AF n := GL( n, C ) /U an affine flag where     1 · · · ∗         . ... .   U = . . ( ∃ a projection AF n → F n .)         O 1 4

  6. Generic k-tuples of flags X 1 , . . . , X k : flags Take a representative X i = ( x 1 i · · · x n i ) ∈ GL( n, C ) ( X 1 , . . . , X k ) is generic if 1 . . . x i 1 2 . . . x i 2 k . . . x i k det( x 1 1 x 1 2 . . . x 1 k ) � = 0 for any 0 ≤ i 1 , . . . , i k ≤ n satisfying i 1 + i 2 + · · · + i k = n . The genericity does not depend on the choices of the matrices X i . Moreover for X 1 , . . . , X k ∈ AF n , the determinant is a well- 2 . . . X i k defined complex number. Denote it by det( X i 1 1 X i 2 k ). 5

  7. Generic k-tuples of flags X 1 , . . . , X k : flags Take a representative X i = ( x 1 i · · · x n i ) ∈ GL( n, C ) ( X 1 , . . . , X k ) is generic if 1 . . . x i 1 2 . . . x i 2 k . . . x i k det( x 1 1 x 1 2 . . . x 1 k ) � = 0 for any 0 ≤ i 1 , . . . , i k ≤ n satisfying i 1 + i 2 + · · · + i k = n . The genericity does not depend on the choices of the matrices X i . Moreover for X 1 , . . . , X k ∈ AF n , the determinant is a well- 2 . . . X i k defined complex number. Denote it by det( X i 1 1 X i 2 k ). 5-a

  8. Generic k-tuples of flags X 1 , . . . , X k : flags Take a representative X i = ( x 1 i · · · x n i ) ∈ GL( n, C ) ( X 1 , . . . , X k ) is generic if 1 . . . x i 1 2 . . . x i 2 k . . . x i k det( x 1 1 x 1 2 . . . x 1 k ) � = 0 for any 0 ≤ i 1 , . . . , i k ≤ n satisfying i 1 + i 2 + · · · + i k = n . The genericity does not depend on the choices of the matrices X i . Moreover for X 1 , . . . , X k ∈ AF n , the determinant is a well- 2 . . . X i k defined complex number. Denote it by det( X i 1 1 X i 2 k ). 5-b

  9. n-triangulation A triple ( i, j, k ) of integers satisfying 0 ≤ i, j, k ≤ n and i + j + k = n corresponds to an integral point of a triangle. (4 , 0 , 0) (3 , 0 , 1) (2 , 0 , 2) (1 , 0 , 3) (0 , 4 , 0) (0 , 0 , 4) We give a ‘counter-clockwise’ orientation to each interior edges of the n -triangulation. 6

  10. n-triangulation A triple ( i, j, k ) of integers satisfying 0 ≤ i, j, k ≤ n and i + j + k = n corresponds to an integral point of a triangle. (4 , 0 , 0) (4 , 0 , 0) (3 , 0 , 1) (2 , 1 , 1) (2 , 0 , 2) (1 , 0 , 3) (0 , 4 , 0) (0 , 0 , 4) (0 , 4 , 0) (0 , 0 , 4) We give a ‘counter-clockwise’ orientation to each interior edges of the n -triangulation. 6-a

  11. n-triangulation A triple ( i, j, k ) of integers satisfying 0 ≤ i, j, k ≤ n and i + j + k = n corresponds to an integral point of a triangle. (4 , 0 , 0) (4 , 0 , 0) (3 , 0 , 1) (2 , 1 , 1) (2 , 0 , 2) (1 , 0 , 3) (0 , 4 , 0) (0 , 0 , 4) (0 , 4 , 0) (0 , 0 , 4) We give a ‘counter-clockwise’ orientation to each interior edges of the n -triangulation. 6-b

  12. n-triangulation A triple ( i, j, k ) of integers satisfying 0 ≤ i, j, k ≤ n and i + j + k = n corresponds to an integral point of a triangle. (4 , 0 , 0) (4 , 0 , 0) (3 , 0 , 1) (2 , 1 , 1) (2 , 0 , 2) (1 , 0 , 3) (0 , 4 , 0) (0 , 0 , 4) (0 , 4 , 0) (0 , 0 , 4) We give a ‘counter-clockwise’ orientation to each interior edges of the n -triangulation. 6-c

  13. Definition of the triple ratio X, Y, Z ∈ F n : a generic triple of flags We fix lifts of X, Y, Z to AF n and denote ∆ i,j,k := det( X i Y j Z k ). X ( i + 1 , j, k − 1) ( i + 1 , j − 1 , k ) ( i, j + 1 , k − 1) ( i, j − 1 , k + 1) ( i, j, k ) Y Z ( i − 1 , j + 1 , k ) ( i − 1 , j, k + 1) The triple ratio is defined (for 1 ≤ i, j, k ≤ n − 1) by T i,j,k ( X, Y, Z ) := ∆ i +1 ,j,k − 1 ∆ i − 1 ,j +1 ,k ∆ i,j − 1 ,k +1 ∆ i +1 ,j − 1 ,k ∆ i,j +1 ,k − 1 ∆ i − 1 ,j,k +1 . This does not depend on the choice of the representatives. 7

  14. Definition of the triple ratio X, Y, Z ∈ F n : a generic triple of flags We fix lifts of X, Y, Z to AF n and denote ∆ i,j,k := det( X i Y j Z k ). X ( i + 1 , j, k − 1) ( i + 1 , j − 1 , k ) ( i, j + 1 , k − 1) ( i, j − 1 , k + 1) ( i, j, k ) Y Z ( i − 1 , j + 1 , k ) ( i − 1 , j, k + 1) The triple ratio is defined (for 1 ≤ i, j, k ≤ n − 1) by T i,j,k ( X, Y, Z ) := ∆ i +1 ,j,k − 1 ∆ i − 1 ,j +1 ,k ∆ i,j − 1 ,k +1 ∆ i +1 ,j − 1 ,k ∆ i,j +1 ,k − 1 ∆ i − 1 ,j,k +1 . This does not depend on the choice of the representatives. 7-a

  15. Definition of the triple ratio X, Y, Z ∈ F n : a generic triple of flags We fix lifts of X, Y, Z to AF n and denote ∆ i,j,k := det( X i Y j Z k ). X ( i + 1 , j, k − 1) ( i + 1 , j − 1 , k ) ( i, j + 1 , k − 1) ( i, j − 1 , k + 1) ( i, j, k ) Y Z ( i − 1 , j + 1 , k ) ( i − 1 , j, k + 1) The triple ratio is defined (for 1 ≤ i, j, k ≤ n − 1) by T i,j,k ( X, Y, Z ) := ∆ i +1 ,j,k − 1 ∆ i − 1 ,j +1 ,k ∆ i,j − 1 ,k +1 ∆ i +1 ,j − 1 ,k ∆ i,j +1 ,k − 1 ∆ i − 1 ,j,k +1 . This does not depend on the choice of the representatives. 7-b

  16. Definition of the triple ratio X, Y, Z ∈ F n : a generic triple of flags We fix lifts of X, Y, Z to AF n and denote ∆ i,j,k := det( X i Y j Z k ). X ( i + 1 , j, k − 1) ( i + 1 , j − 1 , k ) ( i, j + 1 , k − 1) ( i, j − 1 , k + 1) ( i, j, k ) Y Z ( i − 1 , j + 1 , k ) ( i − 1 , j, k + 1) The triple ratio is defined (for 1 ≤ i, j, k ≤ n − 1) by T i,j,k ( X, Y, Z ) := ∆ i +1 ,j,k − 1 ∆ i − 1 ,j +1 ,k ∆ i,j − 1 ,k +1 ∆ i +1 ,j − 1 ,k ∆ i,j +1 ,k − 1 ∆ i − 1 ,j,k +1 . This does not depend on the choice of the representatives. 7-c

  17. Definition of the triple ratio X, Y, Z ∈ F n : a generic triple of flags We fix lifts of X, Y, Z to AF n and denote ∆ i,j,k := det( X i Y j Z k ). X ( i + 1 , j, k − 1) ( i + 1 , j − 1 , k ) ( i, j + 1 , k − 1) ( i, j − 1 , k + 1) ( i, j, k ) Y Z ( i − 1 , j + 1 , k ) ( i − 1 , j, k + 1) The triple ratio is defined (for 1 ≤ i, j, k ≤ n − 1) by T i,j,k ( X, Y, Z ) := ∆ i +1 ,j,k − 1 ∆ i − 1 ,j +1 ,k ∆ i,j − 1 ,k +1 ∆ i +1 ,j − 1 ,k ∆ i,j +1 ,k − 1 ∆ i − 1 ,j,k +1 . This does not depend on the choice of the representatives. 7-d

  18. Definition of the triple ratio X, Y, Z ∈ F n : a generic triple of flags We fix lifts of X, Y, Z to AF n and denote ∆ i,j,k := det( X i Y j Z k ). X ( i + 1 , j, k − 1) ( i + 1 , j − 1 , k ) ( i, j + 1 , k − 1) ( i, j − 1 , k + 1) ( i, j, k ) Y Z ( i − 1 , j + 1 , k ) ( i − 1 , j, k + 1) The triple ratio is defined (for 1 ≤ i, j, k ≤ n − 1) by T i,j,k ( X, Y, Z ) := ∆ i +1 ,j,k − 1 ∆ i − 1 ,j +1 ,k ∆ i,j − 1 ,k +1 ∆ i +1 ,j − 1 ,k ∆ i,j +1 ,k − 1 ∆ i − 1 ,j,k +1 . This does not depend on the choice of the representatives. 7-e

  19. Definition of the triple ratio X, Y, Z ∈ F n : a generic triple of flags We fix lifts of X, Y, Z to AF n and denote ∆ i,j,k := det( X i Y j Z k ). X ( i + 1 , j, k − 1) ( i + 1 , j − 1 , k ) ( i, j + 1 , k − 1) ( i, j − 1 , k + 1) ( i, j, k ) Y Z ( i − 1 , j + 1 , k ) ( i − 1 , j, k + 1) The triple ratio is defined (for 1 ≤ i, j, k ≤ n − 1) by T i,j,k ( X, Y, Z ) := ∆ i +1 ,j,k − 1 ∆ i − 1 ,j +1 ,k ∆ i,j − 1 ,k +1 ∆ i +1 ,j − 1 ,k ∆ i,j +1 ,k − 1 ∆ i − 1 ,j,k +1 . This does not depend on the choice of the representatives. 7-f

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend