parametrization of psl n c representations of surface
play

Parametrization of PSL(n,C)-representations of surface group I, II - PowerPoint PPT Presentation

Parametrization of PSL(n,C)-representations of surface group I, II Yuichi Kabaya (Osaka University) Hakone, 29, 31 May 2012 1 Outline S : a compact orientable surface (genus g , | S | = b , ( S ) < 0) X PSL ( S ) : the PSL(2 , C


  1. Basics of PSL(2 , C )        a b  | a, b, c, d ∈ C , ad − bc = 1 • SL(2 , C ) =  c d  • PSL(2 , C ) = SL(2 , C ) / {± I } • PGL(2 , C ) ∼ 1 = PSL(2 , C ) by A �→ √ det A A • PSL(2 , C ) acts on C P 1 = C ∪{∞} by linear fractional trans- formation:    · z = az + b  a b c d cz + d 7-a

  2. Basics of PSL(2 , C )        a b  | a, b, c, d ∈ C , ad − bc = 1 • SL(2 , C ) =  c d  • PSL(2 , C ) = SL(2 , C ) / {± I } • PGL(2 , C ) ∼ 1 = PSL(2 , C ) by A �→ √ det A A • PSL(2 , C ) acts on C P 1 = C ∪{∞} by linear fractional trans- formation:    · z = az + b  a b c d cz + d 7-b

  3. Basics of PSL(2 , C )        a b  | a, b, c, d ∈ C , ad − bc = 1 • SL(2 , C ) =  c d  • PSL(2 , C ) = SL(2 , C ) / {± I } • PGL(2 , C ) ∼ 1 = PSL(2 , C ) by A �→ √ det A A • PSL(2 , C ) acts on C P 1 = C ∪{∞} by linear fractional trans- formation:    · z = az + b  a b c d cz + d 7-c

  4. Lem A ( x 1 , x 2 , x 3 ) : distinct 3 points of C P 1 ( x ′ 1 , x ′ 2 , x ′ 3 ) : other distinct 3 points of C P 1 There exists a unique A ∈ PSL(2 , C ) s.t. A · x i = x ′ i . In fact, A is explicitly given by ( ) 1 a 11 a 12 A = √ a 21 a 22 ( x 1 − x 2 )( x 2 − x 3 )( x 3 − x 1 )( x ′ 1 − x ′ 2 )( x ′ 2 − x ′ 3 )( x ′ 3 − x ′ 1 ) where a 11 = x 1 x ′ 1 ( x ′ 2 − x ′ 3 ) + x 2 x ′ 2 ( x ′ 3 − x ′ 1 ) + x 3 x ′ 3 ( x ′ 1 − x ′ 2 ) , a 12 = x 1 x 2 x ′ 3 ( x ′ 1 − x ′ 2 ) + x 2 x 3 x ′ 1 ( x ′ 2 − x ′ 3 ) + x 3 x 1 x ′ 2 ( x ′ 3 − x ′ 1 ) , a 21 = x 1 ( x ′ 2 − x ′ 3 ) + x 2 ( x ′ 3 − x ′ 1 ) + x 3 ( x ′ 1 − x ′ 2 ) , a 22 = x 1 x ′ 1 ( x 2 − x 3 ) + x 2 x ′ 2 ( x 3 − x 1 ) + x 3 x ′ 3 ( x 1 − x 2 ) . 8

  5. Lem A ( x 1 , x 2 , x 3 ) : distinct 3 points of C P 1 ( x ′ 1 , x ′ 2 , x ′ 3 ) : other distinct 3 points of C P 1 There exists a unique A ∈ PSL(2 , C ) s.t. A · x i = x ′ i . In fact, A is explicitly given by ( ) 1 a 11 a 12 A = √ a 21 a 22 ( x 1 − x 2 )( x 2 − x 3 )( x 3 − x 1 )( x ′ 1 − x ′ 2 )( x ′ 2 − x ′ 3 )( x ′ 3 − x ′ 1 ) where a 11 = x 1 x ′ 1 ( x ′ 2 − x ′ 3 ) + x 2 x ′ 2 ( x ′ 3 − x ′ 1 ) + x 3 x ′ 3 ( x ′ 1 − x ′ 2 ) , a 12 = x 1 x 2 x ′ 3 ( x ′ 1 − x ′ 2 ) + x 2 x 3 x ′ 1 ( x ′ 2 − x ′ 3 ) + x 3 x 1 x ′ 2 ( x ′ 3 − x ′ 1 ) , a 21 = x 1 ( x ′ 2 − x ′ 3 ) + x 2 ( x ′ 3 − x ′ 1 ) + x 3 ( x ′ 1 − x ′ 2 ) , a 22 = x 1 x ′ 1 ( x 2 − x 3 ) + x 2 x ′ 2 ( x 3 − x 1 ) + x 3 x ′ 3 ( x 1 − x 2 ) . 8-a

  6. Proof of Lem A Consider a linear fractional transformation which sends ( x 1 , x 2 , x 3 ) to ( ∞ , 0 , 1). This is given by z �→ z − x 2 · x 3 − x 1 z − x 1 x 3 − x 2 uniquely. Thus the matrix is given by    ( x 3 − x 1 ) − ( x 3 − x 1 ) x 2  ( x 3 − x 2 ) − ( x 3 − x 2 ) x 1 For general case, consider the composition A − 1 2 A 1 : ∼ ∼ = = ( x ′ 1 , x ′ 2 , x ′ ( x 1 , x 2 , x 3 ) ( ∞ , 0 , 1) 3 ) − − → ← − − � A 1 A 2 9

  7. Fact A ∈ SL(2 , C ) e ∈ C \ { 0 , ± 1 } : one of the eigenvalues of A x, y ∈ C P 1 : fixed points of A . (Assume x � = y .) Suppose x corresponds to the eigenvector of e . (Equivalently, assume x is the attractive fixed point if | e | > 1.) Then A is uniquely determined by e , x , y .       − 1 0  e  x y  x y A =    0 e − 1 1 1 1 1    ex − e − 1 y − ( e − e − 1 ) xy 1 =  e − e − 1 − ey + e − 1 x x − y =: M ( e ; x, y ) 10

  8. E.g.   0  e • M ( e ; ∞ , 0) =  . 0 e − 1 As a linear fractional transformation t �→ e 2 t .    e − 1 0 • M ( e ; 0 , ∞ ) =  . 0 e As a linear fractional transformation t �→ e − 2 t .      ex − e − 1 y − ( e − e − 1 ) xy 1  M ( e ; x, y ) =   e − e − 1 − ey + e − 1 x x − y 11

  9. Lem B x , y : distinct points on C P 1 . z 1 , z 2 : points on C P 1 different from x and y . ( z 1 and z 2 may coincide.) Then there exists a unique t ∈ C ∗ up to sign such that M ( t ; x, y ) sends z 1 to z 2 . Proof Since M ( t ; x, y ) · z 1 = ( tx − t − 1 y ) z 1 − ( t − t − 1 ) xy = z 2 , ( t − t − 1 ) z 1 − ty + t − 1 x we have t 2 = ( x − z 1 )( y − z 2 ) ( x − z 2 )( y − z 1 ) = [ y : x : z 1 : z 2 ] . Therefore t is well-defined up to sign. � 12

  10. Lem B x , y : distinct points on C P 1 . z 1 , z 2 : points on C P 1 different from x and y . ( z 1 and z 2 may coincide.) Then there exists a unique t ∈ C ∗ up to sign such that M ( t ; x, y ) sends z 1 to z 2 . Proof Since M ( t ; x, y ) · z 1 = ( tx − t − 1 y ) z 1 − ( t − t − 1 ) xy = z 2 , ( t − t − 1 ) z 1 − ty + t − 1 x we have t 2 = ( x − z 1 )( y − z 2 ) ( x − z 2 )( y − z 1 ) = [ y : x : z 1 : z 2 ] . Therefore t is well-defined up to sign. � 12-a

  11. SL(2 , C ) - and PSL(2 , C ) - character variety • S : a compact orientable surface • ρ : π 1 ( S ) → SL(2 , C ) (or PSL(2 , C )) is reducible if ρ ( π 1 ( S )) fixes a point on C P 1 . Otherwise ρ is called irreducible. • SL(2 , C ) acts on SL(2 , C )-representations by conjugation. • { ρ : π 1 ( S ) → SL(2 , C ) | irred. reps } / ∼ conj can be regarded as a subset of the SL(2 , C )-character variety X SL ( S ). • { ρ : π 1 ( S ) → PSL(2 , C ) | irred. reps } / ∼ conj can be re- garded as a subset of the PSL(2 , C )-character variety X PSL ( S ). 13

  12. SL(2 , C ) - and PSL(2 , C ) - character variety • S : a compact orientable surface • ρ : π 1 ( S ) → SL(2 , C ) (or PSL(2 , C )) is reducible if ρ ( π 1 ( S )) fixes a point on C P 1 . Otherwise ρ is called irreducible. • SL(2 , C ) acts on SL(2 , C )-representations by conjugation. • { ρ : π 1 ( S ) → SL(2 , C ) | irred. reps } / ∼ conj can be regarded as a subset of the SL(2 , C )-character variety X SL ( S ). • { ρ : π 1 ( S ) → PSL(2 , C ) | irred. reps } / ∼ conj can be re- garded as a subset of the PSL(2 , C )-character variety X PSL ( S ). 13-a

  13. SL(2 , C ) - and PSL(2 , C ) - character variety • S : a compact orientable surface • ρ : π 1 ( S ) → SL(2 , C ) (or PSL(2 , C )) is reducible if ρ ( π 1 ( S )) fixes a point on C P 1 . Otherwise ρ is called irreducible. • SL(2 , C ) acts on SL(2 , C )-representations by conjugation. • { ρ : π 1 ( S ) → SL(2 , C ) | irred. reps } / ∼ conj can be regarded as a subset of the SL(2 , C )-character variety X SL ( S ). • { ρ : π 1 ( S ) → PSL(2 , C ) | irred. reps } / ∼ conj can be re- garded as a subset of the PSL(2 , C )-character variety X PSL ( S ). 13-b

  14. SL(2 , C ) - and PSL(2 , C ) - character variety • S : a compact orientable surface • ρ : π 1 ( S ) → SL(2 , C ) (or PSL(2 , C )) is reducible if ρ ( π 1 ( S )) fixes a point on C P 1 . Otherwise ρ is called irreducible. • SL(2 , C ) acts on SL(2 , C )-representations by conjugation. • { ρ : π 1 ( S ) → SL(2 , C ) | irred. reps } / ∼ conj can be regarded as a subset of the SL(2 , C )-character variety X SL ( S ). • { ρ : π 1 ( S ) → PSL(2 , C ) | irred. reps } / ∼ conj can be re- garded as a subset of the PSL(2 , C )-character variety X PSL ( S ). 13-c

  15. SL(2 , C ) - and PSL(2 , C ) - character variety • S : a compact orientable surface • ρ : π 1 ( S ) → SL(2 , C ) (or PSL(2 , C )) is reducible if ρ ( π 1 ( S )) fixes a point on C P 1 . Otherwise ρ is called irreducible. • SL(2 , C ) acts on SL(2 , C )-representations by conjugation. • { ρ : π 1 ( S ) → SL(2 , C ) | irred. reps } / ∼ conj can be regarded as a subset of the SL(2 , C )-character variety X SL ( S ). • { ρ : π 1 ( S ) → PSL(2 , C ) | irred. reps } / ∼ conj can be re- garded as a subset of the PSL(2 , C )-character variety X PSL ( S ). 13-d

  16. Representations of π 1 ( P ) Let P be a pair of pants (3 holed sphere). Take generators γ i of π 1 ( P ) as: γ 1 ∗ γ 3 γ 2 They satisfy γ 1 γ 2 γ 3 = 1. We will parametrize reps ρ : π 1 ( P ) → SL(2 , C ) satisfying (i) ρ ( γ i ) has two fixed points for each i , (ii) irreducible. 14

  17. Representations of π 1 ( P ) Let P be a pair of pants (3 holed sphere). Take generators γ i of π 1 ( P ) as: γ 1 ∗ γ 3 γ 2 They satisfy γ 1 γ 2 γ 3 = 1. We will parametrize reps ρ : π 1 ( P ) → SL(2 , C ) satisfying (i) ρ ( γ i ) has two fixed points for each i , (ii) irreducible. 14-a

  18. Representations of π 1 ( P ) Let P be a pair of pants (3 holed sphere). Take generators γ i of π 1 ( P ) as: γ 1 ∗ γ 3 γ 2 They satisfy γ 1 γ 2 γ 3 = 1. We will parametrize reps ρ : π 1 ( P ) → SL(2 , C ) satisfying (i) ρ ( γ i ) has two fixed points for each i , (ii) irreducible. 14-b

  19. Representations of π 1 ( P ) e i : one of the eigenvalues of ρ ( γ i ) x i , y i : fixed points of ρ ( γ i ). Assume x i is attractive if | e i | > 1. Prop 1 ρ is uniquely determined by e i and x i . In fact, y i = e 2 i e i +2 x i +2 ( x i − x i +1 ) + e i +2 x i +1 ( x i +2 − x i ) + e i e i +1 x i ( x i +1 − x i +2 ) e 2 i e i +2 ( x i − x i +1 ) + e i +2 ( x i +2 − x i ) + e i e i +1 ( x i +1 − x i +2 ) for i = 1 , 2 , 3 (mod 3), and thus ( ) 1 a 11 a 12 ρ ( γ i ) = , a 21 a 22 e i e i +2 ( x i +1 − x i )( x i +2 − x i ) a 11 = e 2 i e i +2 x i ( x i − x i +1 ) + e i +2 x i +1 ( x i +2 − x i ) + e i e i +1 x i ( x i +1 − x i +2 ) , a 12 = x i ( e 2 i e i +2 x i +2 ( x i +1 − x i ) + e i +2 x i +1 ( x i − x i +2 ) + e i e i +1 x i ( x i +2 − x i +1 )) , a 21 = e 2 i e i +2 ( x i − x i +1 ) + e i +2 ( x i +2 − x i ) + e i e i +1 ( x i +1 − x i +2 ) , a 22 = e 2 i e i +2 x i +2 ( x i +1 − x i ) + e i +2 x i ( x i − x i +2 ) + e i e i +1 x i ( x i +2 − x i +1 ) . Conversely, if neither e 1 = e 2 e 3 , e 2 = e 3 e 1 , e 3 = e 1 e 2 nor e 1 e 2 e 3 = 1, then the above ρ is an irreducible rep. 15

  20. Representations of π 1 ( P ) e i : one of the eigenvalues of ρ ( γ i ) x i , y i : fixed points of ρ ( γ i ). Assume x i is attractive if | e i | > 1. Prop 1 ρ is uniquely determined by e i and x i . In fact, y i = e 2 i e i +2 x i +2 ( x i − x i +1 ) + e i +2 x i +1 ( x i +2 − x i ) + e i e i +1 x i ( x i +1 − x i +2 ) e 2 i e i +2 ( x i − x i +1 ) + e i +2 ( x i +2 − x i ) + e i e i +1 ( x i +1 − x i +2 ) for i = 1 , 2 , 3 (mod 3), and thus ( ) 1 a 11 a 12 ρ ( γ i ) = , a 21 a 22 e i e i +2 ( x i +1 − x i )( x i +2 − x i ) a 11 = e 2 i e i +2 x i ( x i − x i +1 ) + e i +2 x i +1 ( x i +2 − x i ) + e i e i +1 x i ( x i +1 − x i +2 ) , a 12 = x i ( e 2 i e i +2 x i +2 ( x i +1 − x i ) + e i +2 x i +1 ( x i − x i +2 ) + e i e i +1 x i ( x i +2 − x i +1 )) , a 21 = e 2 i e i +2 ( x i − x i +1 ) + e i +2 ( x i +2 − x i ) + e i e i +1 ( x i +1 − x i +2 ) , a 22 = e 2 i e i +2 x i +2 ( x i +1 − x i ) + e i +2 x i ( x i − x i +2 ) + e i e i +1 x i ( x i +2 − x i +1 ) . Conversely, if neither e 1 = e 2 e 3 , e 2 = e 3 e 1 , e 3 = e 1 e 2 nor e 1 e 2 e 3 = 1, then the above ρ is an irreducible rep. 15-a

  21. Representations of π 1 ( P ) e i : one of the eigenvalues of ρ ( γ i ) x i , y i : fixed points of ρ ( γ i ). Assume x i is attractive if | e i | > 1. Prop 1 ρ is uniquely determined by e i and x i . In fact, y i = e 2 i e i +2 x i +2 ( x i − x i +1 ) + e i +2 x i +1 ( x i +2 − x i ) + e i e i +1 x i ( x i +1 − x i +2 ) e 2 i e i +2 ( x i − x i +1 ) + e i +2 ( x i +2 − x i ) + e i e i +1 ( x i +1 − x i +2 ) for i = 1 , 2 , 3 (mod 3), and thus ( ) 1 a 11 a 12 ρ ( γ i ) = , a 21 a 22 e i e i +2 ( x i +1 − x i )( x i +2 − x i ) a 11 = e 2 i e i +2 x i ( x i − x i +1 ) + e i +2 x i +1 ( x i +2 − x i ) + e i e i +1 x i ( x i +1 − x i +2 ) , a 12 = x i ( e 2 i e i +2 x i +2 ( x i +1 − x i ) + e i +2 x i +1 ( x i − x i +2 ) + e i e i +1 x i ( x i +2 − x i +1 )) , a 21 = e 2 i e i +2 ( x i − x i +1 ) + e i +2 ( x i +2 − x i ) + e i e i +1 ( x i +1 − x i +2 ) , a 22 = e 2 i e i +2 x i +2 ( x i +1 − x i ) + e i +2 x i ( x i − x i +2 ) + e i e i +1 x i ( x i +2 − x i +1 ) . Conversely, if neither e 1 = e 2 e 3 , e 2 = e 3 e 1 , e 3 = e 1 e 2 nor e 1 e 2 e 3 = 1, then the above ρ is an irreducible rep. 15-b

  22. Proof of Prop 1 Assume that ( x 1 , x 2 , x 3 ) = (0 , ∞ , 1). Then ρ ( γ i ) are uniquely      ex − e − 1 y − ( e − e − 1 ) xy 1 determined by Fact  M ( e ; x, y ) =   e − e − 1 − ey + e − 1 x x − y     e − 1 0  e 2 ( e − 1 − e 2 ) y 2  1   , 2 ρ ( γ 1 ) =   ρ ( γ 2 ) =  , e − 1 1 − e 1 e − 1  0 e 1 2 y 1    e − 1 3 y 3 − e 3 ( e 3 − e − 1 1 3 ) y 3  . ρ ( γ 3 ) = e − 1 e 3 y 3 − e − 1 y 3 − 1 − e 3 3 3 From the identity ρ ( γ 1 ) ρ ( γ 2 ) = ρ ( γ 3 ) − 1 , we have e 1 − e − 1 y 2 = e 2 − e 1 e − 1 y 3 = e 2 − e 1 e − 1 1 3 3 y 1 = , , . e − 1 2 e 3 − e − 1 e 2 − e − 1 e 2 − e 1 e 3 1 2 For general case, use Lem A . 16

  23. Proof of Prop 1 Conversely, we can show that the above ρ is a homomorphism for any e i � = 0 and distinct triple x 1 , x 2 , x 3 . To make sure that ρ is irreducible, we have to check that y i ’s are different from x i ’s and distinct each other. We can show that e 1 = e 2 e 3 iff x 1 = y 2 = y 3 , e 2 = e 3 e 1 iff y 1 = x 2 = y 3 , e 3 = e 1 e 2 iff y 1 = y 2 = x 3 , e 1 e 2 e 3 = 1 iff y 1 = y 2 = y 3 . � 17

  24. Proof of Prop 1 Conversely, we can show that the above ρ is a homomorphism for any e i � = 0 and distinct triple x 1 , x 2 , x 3 . To make sure that ρ is irreducible, we have to check that y i ’s are different from x i ’s and distinct each other. We can show that e 1 = e 2 e 3 iff x 1 = y 2 = y 3 , e 2 = e 3 e 1 iff y 1 = x 2 = y 3 , e 3 = e 1 e 2 iff y 1 = y 2 = x 3 , e 1 e 2 e 3 = 1 iff y 1 = y 2 = y 3 . � 17-a

  25. Proof of Prop 1 Conversely, we can show that the above ρ is a homomorphism for any e i � = 0 and distinct triple x 1 , x 2 , x 3 . To make sure that ρ is irreducible, we have to check that y i ’s are different from x i ’s and distinct each other. We can show that e 1 = e 2 e 3 iff x 1 = y 2 = y 3 , e 2 = e 3 e 1 iff y 1 = x 2 = y 3 , e 3 = e 1 e 2 iff y 1 = y 2 = x 3 , e 1 e 2 e 3 = 1 iff y 1 = y 2 = y 3 . � 17-b

  26. Remark • ρ is completely determined (not up to conjugacy) by e i and x i ( i = 1 , 2 , 3). • The conjugacy class of ρ is determined by e i ( i = 1 , 2 , 3), since it is determined by tr( γ i ) = e i + e − 1 . i • ρ also gives a PSL(2 , C )-rep. Any other lift to SL(2 , C )-rep is obtained by the action of H 1 ( P ; Z 2 ) ∼ = Hom( π 1 ( P ) , Z 2 ) ( e 1 , e 2 , e 3 ) �→ ( ε 1 e 1 , ε 2 e 2 .ε 3 e 3 ) where ε i = ± 1 s.t. ε 1 ε 2 ε 3 = 1. 18

  27. Remark • ρ is completely determined (not up to conjugacy) by e i and x i ( i = 1 , 2 , 3). • The conjugacy class of ρ is determined by e i ( i = 1 , 2 , 3), since it is determined by tr( γ i ) = e i + e − 1 . i • ρ also gives a PSL(2 , C )-rep. Any other lift to SL(2 , C )-rep is obtained by the action of H 1 ( P ; Z 2 ) ∼ = Hom( π 1 ( P ) , Z 2 ) ( e 1 , e 2 , e 3 ) �→ ( ε 1 e 1 , ε 2 e 2 .ε 3 e 3 ) where ε i = ± 1 s.t. ε 1 ε 2 ε 3 = 1. 18-a

  28. Remark • ρ is completely determined (not up to conjugacy) by e i and x i ( i = 1 , 2 , 3). • The conjugacy class of ρ is determined by e i ( i = 1 , 2 , 3), since it is determined by tr( γ i ) = e i + e − 1 . i • ρ also gives a PSL(2 , C )-rep. Any other lift to SL(2 , C )-rep is obtained by the action of H 1 ( P ; Z 2 ) ∼ = Hom( π 1 ( P ) , Z 2 ) ( e 1 , e 2 , e 3 ) �→ ( ε 1 e 1 , ε 2 e 2 .ε 3 e 3 ) where ε i = ± 1 s.t. ε 1 ε 2 ε 3 = 1. 18-b

  29. Observation Let C 3 ⊃ E = { ( e 1 , e 2 , e 3 ) | e i � = 0 , ± 1 , e s 1 1 e s 2 2 e s 3 3 � = 1 for any s i = ± 1 } . Then we have E/ ( Z 2 ) 3 injective − − − − − − → X SL ( P ) where ( Z 2 ) 3 acts on E as e i �→ e i − 1 . We also have ( E/ ( Z 2 ) 3 ) / ( Z 2 ) 2 injective − − − − − − → X PSL ( P ) where ( Z 2 ) 2 acts on E as ( e 1 , e 2 , e 3 ) �→ ( ε 1 e 1 , ε 2 e 2 , ε 3 e 3 ) for ε i = ± 1 s.t. ε 1 ε 2 ε 3 = 1. 19

  30. � � � � � � � Observation Let X = { ( x 1 , x 2 , x 3 ) | x i � = x j ( i � = j ) } ⊂ C 3 , then inj Hom( π 1 ( P ) , SL(2 , C )) E × X pr E inj E/ ( Z 2 ) 3 X SL ( P ) inj ( E/ ( Z 2 ) 3 ) / ( Z 2 ) 2 � X PSL ( P ) The images of the horizontal maps (irreducible representations s.t. ρ ( γ i )’s have two fixed points) are open and dense. 20

  31. Twist parameter S = P ∪ P ′ : a four holed sphere P ′ ρ : π 1 ( S ) → SL(2 , C ) : a rep whose restrictions γ 5 e 5 e 4 to π 1 ( P ) and π 1 ( P ′ ) satisfies (i), (ii). γ 4 Let e i be one of the eigenvalues of ρ ( γ i ) for ( e 1 , t 1 ) i = 1 , . . . , 5 and x i (resp. y i ) be the fixed point γ 1 γ 2 corresponding to e i (resp. e − 1 ). i e 3 By Lem B , there exists a unique t 1 satisfying e 2 γ 3 P M ( √− t 1 ; x 1 , y 1 ) · x 2 = x 5 . We call t 1 the twist parameter. To define t 1 , we assign an (oriented) graph dual to the pants decomposition. 21

  32. Twist parameter S = P ∪ P ′ : a four holed sphere P ′ ρ : π 1 ( S ) → SL(2 , C ) : a rep whose restrictions γ 5 e 5 e 4 to π 1 ( P ) and π 1 ( P ′ ) satisfies (i), (ii). γ 4 Let e i be one of the eigenvalues of ρ ( γ i ) for ( e 1 , t 1 ) i = 1 , . . . , 5 and x i (resp. y i ) be the fixed point γ 1 γ 2 corresponding to e i (resp. e − 1 ). i e 3 By Lem B , there exists a unique t 1 satisfying e 2 γ 3 P M ( √− t 1 ; x 1 , y 1 ) · x 2 = x 5 . We call t 1 the twist parameter. To define t 1 , we assign an (oriented) graph dual to the pants decomposition. 21-a

  33. Twist parameter S = P ∪ P ′ : a four holed sphere P ′ ρ : π 1 ( S ) → SL(2 , C ) : a rep whose restrictions γ 5 e 5 e 4 to π 1 ( P ) and π 1 ( P ′ ) satisfies (i), (ii). γ 4 Let e i be one of the eigenvalues of ρ ( γ i ) for ( e 1 , t 1 ) i = 1 , . . . , 5 and x i (resp. y i ) be the fixed point γ 1 γ 2 corresponding to e i (resp. e − 1 ). i e 3 By Lem B , there exists a unique t 1 satisfying e 2 γ 3 P M ( √− t 1 ; x 1 , y 1 ) · x 2 = x 5 . We call t 1 the twist parameter. To define t 1 , we assign an (oriented) graph dual to the pants decomposition. 21-b

  34. Twist parameter S = P ∪ P ′ : a four holed sphere P ′ ρ : π 1 ( S ) → SL(2 , C ) : a rep whose restrictions γ 5 e 5 e 4 to π 1 ( P ) and π 1 ( P ′ ) satisfies (i), (ii). γ 4 Let e i be one of the eigenvalues of ρ ( γ i ) for ( e 1 , t 1 ) i = 1 , . . . , 5 and x i (resp. y i ) be the fixed point γ 1 γ 2 corresponding to e i (resp. e − 1 ). i e 3 By Lem B , there exists a unique t 1 satisfying e 2 γ 3 P M ( √− t 1 ; x 1 , y 1 ) · x 2 = x 5 . We call t 1 the twist parameter. To define t 1 , we assign an (oriented) graph dual to the pants decomposition. 21-c

  35. Remark Once we fix choices of the eigenvalues e 1 , . . . , e 5 , the twist parameter t 1 is a conjugacy invariant. It is also well-defined for PSL(2 , C )-representations. 22

  36. x 5 e 5 e 4 Prop 2 x 4 e i : one of the eigenvalues of ρ ( γ i ) ( e 1 , t 1 ) x 1 x i : the fixed point corresponding to e i x 2 t 1 : twist parameter e 3 e 2 Then we have x 3 x 4 = { e 1 ( − ( e 2 − e 1 e 3 )( e 5 − e 1 e 4 ) t 1 + e 3 ( e 1 e 5 − e 4 )) x 1 ( x 2 − x 3 ) + e 12 e 2 ( e 1 e 5 − e 4 ) x 2 ( x 3 − x 1 ) + e 2 ( e 1 e 5 − e 4 ) x 3 ( x 1 − x 2 ) } / { e 1 ( − ( e 2 − e 1 e 3 )( e 5 − e 1 e 4 ) t 1 + e 3 ( e 1 e 5 − e 4 ))( x 2 − x 3 ) + e 12 e 2 ( e 1 e 5 − e 4 )( x 3 − x 1 ) + e 2 ( e 1 e 5 − e 4 )( x 1 − x 2 ) } x 5 = ( − ( e 2 − e 1 e 3 ) t 1 + e 1 e 3 ) x 1 ( x 2 − x 3 ) + e 12 e 2 x 2 ( x 3 − x 1 ) + e 2 x 3 ( x 1 − x 2 ) ( − ( e 2 − e 1 e 3 ) t 1 + e 1 e 3 )( x 2 − x 3 ) + e 12 e 2 ( x 3 − x 1 ) + e 2 ( x 1 − x 2 ) This means that x 4 and x 5 are uniquely determined by x 1 , x 2 , x 3 ∈ C P 1 , e 1 , . . . , e 5 and t 1 . 23

  37. Remark • Conversely x 2 and x 3 are determined by x 1 , x 4 , x 5 ∈ C P 1 , e 1 , . . . , e 5 and t 1 : x 2 = ( − ( e 4 − e 1 e 5 ) t 1 − 1 + e 1 e 5 ) x 1 ( x 5 − x 4 ) + e 12 e 4 x 5 ( x 4 − x 1 ) + e 4 x 4 ( x 1 − x 5 ) ( − ( e 4 − e 1 e 5 ) t 1 − 1 + e 1 e 5 )( x 5 − x 4 ) + e 12 e 4 ( x 4 − x 1 ) + e 4 ( x 1 − x 5 ) x 3 = { e 1 ( − ( e 4 − e 1 e 5 )( e 2 − 1 − e 1 e 3 − 1 ) t 1 − 1 + e 5 ( e 1 e 2 − 1 − e 3 − 1 )) x 1 ( x 5 − x 4 ) 1 e 4 ( e 1 e 2 − 1 − e 3 − 1 ) x 5 ( x 4 − x 1 ) + e 4 ( e 1 e 2 − 1 − e 3 − 1 ) x 4 ( x 1 − x 5 ) } / + e 2 { e 1 ( − ( e 4 − e 1 e 5 )( e 3 − e 1 e 2 ) t 1 − 1 + e 5 ( e 1 e 3 − e 2 ))( x 5 − x 4 ) + e 2 1 e 4 ( e 1 e 3 − e 2 )( x 4 − x 1 ) + e 4 ( e 1 e 3 − e 2 )( x 1 − x 5 ) } • From Prop 1 and Prop 2 , ρ is uniquely determined by x 1 , x 2 , x 3 ∈ C P 1 , e 1 , . . . , e 5 and t 1 . The conjugacy class of ρ is uniquely determined by e 1 , . . . , e 5 and t 1 . 24

  38. Remark • Moreover a conjugacy class of π 1 ( b -holed sphere) → SL(2 , C ) is completely determined by these eigenvalue parameters e i and twist parameters t i by Prop 1 and Prop 2 . x 5 x 2 x 7 x 4 x 1 x 3 x 6 (We assign ( e i , t i ) for each ‘interior’ edge and e i for each ‘boundary’ edge of the dual graph.) 25

  39. Remark • Moreover a conjugacy class of π 1 ( b -holed sphere) → SL(2 , C ) is completely determined by these eigenvalue parameters e i and twist parameters t i by Prop 1 and Prop 2 . x 5 x 2 x 7 x 4 x 1 x 3 x 6 (We assign ( e i , t i ) for each ‘interior’ edge and e i for each ‘boundary’ edge of the dual graph.) 25-a

  40. Remark • Moreover a conjugacy class of π 1 ( b -holed sphere) → SL(2 , C ) is completely determined by these eigenvalue parameters e i and twist parameters t i by Prop 1 and Prop 2 . x 5 x 2 x 7 x 4 x 1 x 3 x 6 (We assign ( e i , t i ) for each ‘interior’ edge and e i for each ‘boundary’ edge of the dual graph.) 25-b

  41. Parametrization S : a surface of genus g . Given C ⊂ S : a pants decomposition (set of maximal disjoint scc.) G : an (oriented) graph dual to C We will parametrize the reps into PSL(2 , C ) satisfying, (i) ρ ( c ) has two fixed points for each scc c ⊂ C , (ii) restriction to each pair of pants is irreducible. 26

  42. Parameters Assign an eigenvalue parameter e i and a twist parameter t i to each edge of G . Let P be the set of triples of scc’s of C which are the boundary of a component of S \ C . We let E ( S, C ) = { ( e 1 , . . . , e 3 g − 3 ) | e i � = 0 , ± 1 , e s 1 i e s 2 j e s 3 k � = 1 for ( i, j, k ) ∈ P} . We will reconstruct a representation from ( e 1 , . . . , e 3 g − 3 ) ∈ E ( S, C ) and t i ∈ C \ { 0 } . 27

  43. Matrix generators For a dual graph, we give a presentation of π 1 ( S ). ( e 2 , t 2 ) ( e 3 , t 3 ) ( e 1 , t 1 ) 28

  44. Matrix generators For a dual graph, we give a presentation of π 1 ( S ). ( e 2 , t 2 ) Take a maximal tree T in the dual graph G . ( e 3 , t 3 ) ( e 1 , t 1 ) 29

  45. Matrix generators For a dual graph, we give a presentation of π 1 ( S ). Cut S along the scc’s correspond- ing to the edges G \ T , we obtain a 2 g -holed sphere S 0 . 30

  46. Matrix generators For a dual graph, we give a presentation of π 1 ( S ). α 3 α 4 Take α i , α i + g ∈ π 1 ( S 0 ) for each edge of G \ T . They satisfy α i 1 . . . α i 2 g = 1 . (Eg. α 3 α 1 α 2 α 4 = 1 on the left Figure) α 1 α 2 31

  47. Matrix generators For a dual graph, we give a presentation of π 1 ( S ). Take β 1 , . . . , β g ∈ π 1 ( S ) for each edge of G \ T . β 2 β 1 32

  48. Matrix generators For a dual graph, we give a presentation of π 1 ( S ). α 3 α 4 π 1 ( S ) has the following presenta- tion: β 2 β 1 α 1 α 2 α g + i − 1 = β i − 1 α i β i � � α 1 , . . . , α 2 g, β 1 . . . β g | α i 1 . . . α i 2 g = 1 , g ∏ ± 1 , β i k ± 1 ] = 1 � = � α 1 , . . . , α g , β 1 . . . , β g | [ α i k k 33

  49. Matrix generators For a dual graph, we give a presentation of π 1 ( S ). α 3 α 4 π 1 ( S ) has the following presenta- tion: β 2 β 1 α 1 α 2 (Eg. on the above Figure, � α 1 , . . . , α 4 , β 1 , β 2 | α 3 α 1 α 2 α 4 = 1 , α 3 − 1 = β 1 − 1 α 1 β 1 , α 4 − 1 = β 2 − 1 α 2 β 2 � = � α 1 , α 2 , β 1 , β 2 | [ β 1 − 1 , α − 1 1 ][ α 2 , β 2 − 1 ] = 1 � ) 34

  50. We give matrices corresponding to these generators. Step 1 Compute sufficiently many number of fixed points for � G (universal cover of G ) by using Prop 2 . x 8 x 7 x 9 x 6 e 1 e 2 ( e 2 , t 2 ) x 5 x 4 ( e 3 , t 3 ) ( e 1 , t 1 ) ( e 3 , t 3 ) x 3 x 1 x 2 35

  51. Step 1 Compute sufficiently many number of fixed points for � G by using Prop 2 . x 8 x 7 x 9 x 6 e 1 e 2 ( e 2 , t 2 ) x 5 x 4 ( e 3 , t 3 ) ( e 1 , t 1 ) ( e 3 , t 3 ) x 3 x 1 x 2 36

  52. Step 1 Compute sufficiently many number of fixed points for � G by using Prop 2 . x 8 x 7 x 9 x 6 e 1 e 2 ( e 2 , t 2 ) x 5 x 4 ( e 3 , t 3 ) ( e 1 , t 1 ) ( e 3 , t 3 ) x 3 x 1 x 2 36-a

  53. Step 1 Compute sufficiently many number of fixed points for � G by using Prop 2 . x 8 x 7 x 9 x 6 e 1 e 2 ( e 2 , t 2 ) x 5 x 4 ( e 3 , t 3 ) ( e 1 , t 1 ) ( e 3 , t 3 ) x 3 x 1 x 2 36-b

  54. Step 1 Compute sufficiently many number of fixed points for � G by using Prop 2 . x 8 x 7 x 9 x 6 e 1 e 2 ( e 2 , t 2 ) x 5 x 4 ( e 3 , t 3 ) ( e 1 , t 1 ) ( e 3 , t 3 ) x 3 x 1 x 2 36-c

  55. Step 2 Using Prop 1 , compute the matrices for α i ’s. Recall Prop 1 : ( ) 1 a 11 a 12 ρ ( γ i ) = , a 21 a 22 e i e i +2 ( x i +1 − x i )( x i +2 − x i ) a 11 = e 2 i e i +2 x i ( x i − x i +1 ) + e i +2 x i +1 ( x i +2 − x i ) + e i e i +1 x i ( x i +1 − x i +2 ) , a 12 = x i ( e 2 i e i +2 x i +2 ( x i +1 − x i ) + e i +2 x i +1 ( x i − x i +2 ) + e i e i +1 x i ( x i +2 − x i +1 )) , a 21 = e 2 i e i +2 ( x i − x i +1 ) + e i +2 ( x i +2 − x i ) + e i e i +1 ( x i +1 − x i +2 ) , a 22 = e 2 i e i +2 x i +2 ( x i +1 − x i ) + e i +2 x i ( x i − x i +2 ) + e i e i +1 x i ( x i +2 − x i +1 ) , (SL(2 , C ) matrix from eigs e 1 , e 2 , e 3 and fixed pts x 1 , x 2 , x 3 .) e 1 x 1 x 2 e 3 x 3 e 2 37

  56. Step 3 Using Lem A , compute the matrices for β i ’s. Recall Lem A : There exists a unique matrix in PSL(2 , C ) s.t. ( x 1 , x 2 , x 3 ) �→ ( x ′ 1 , x ′ 2 , x ′ 3 ) x 1 x ′ x ′ x 3 1 2 x 2 x ′ 3 This kind of matrix conjugating ρ ( α i ) to ρ ( α g + i ) − 1 . 38

  57. � � � Thus we can reconstruct a PSL(2 , C )-representation from the eigenvalue and twist parameters. In other words, we have obtained a map E ( S, C ) × ( C \ { 0 } ) 3 g − 3 → X PSL ( S ) . If we take a covering space Y corresponding to the signs of ρ ( β i ), we obtain the following diagram X SL ( S ) Y H 1 ( G ; Z 2 ) H 1 ( S ; Z 2 ) E ( S, C ) × ( C \ { 0 } ) 3 g − 3 � X PSL ( S ) (Here the covering group H 1 ( G ; Z 2 ) ∼ = ( Z 2 ) g .) 39

  58. � � � Thus we can reconstruct a PSL(2 , C )-representation from the eigenvalue and twist parameters. In other words, we have obtained a map E ( S, C ) × ( C \ { 0 } ) 3 g − 3 → X PSL ( S ) . If we take a covering space Y corresponding to the signs of ρ ( β i ), we obtain the following diagram X SL ( S ) Y H 1 ( G ; Z 2 ) H 1 ( S ; Z 2 ) E ( S, C ) × ( C \ { 0 } ) 3 g − 3 � X PSL ( S ) (Here the covering group H 1 ( G ; Z 2 ) ∼ = ( Z 2 ) g .) 39-a

  59. P ′ γ 5 e 5 e 4 Examples: γ 4 4 holed sphere ( e 1 , t 1 ) γ 1 γ 2 We apply Prop 2 for ( x 1 , x 2 , x 3 ) = ( ∞ , 1 , 0), then we have e 3 e 2 γ 3 P x 4 = e 1 ( e 2 − e 1 e 3 )( e 5 − e 1 e 4 ) t 1 − e 1 ( e 3 − e 1 e 2 )( e 1 e 5 − e 4 ) , ( e 12 − 1) e 2 ( e 1 e 5 − e 4 ) x 5 = ( e 2 − e 1 e 3 ) t 1 − e 1 ( e 3 − e 1 e 2 ) . ( e 12 − 1) e 2 40

  60. By Prop 1 , we have,     e 3  − e 1 e 1 e 3 + e 2 + 1 e 3 − 1 e 1 e 2 − e 1    e 2 e 2  ρ ( γ 1 ) = ρ ( γ 2 ) =  ,   e 2 − e 1 e 1 1 0 e 1 e 3 e 3     1 0  a 11 a 12 e 3    , ρ ( γ 3 ) =  , ρ ( γ 4 ) =  e 3 − e 2 1 a 21 a 22 e 1 e 3 − e 1 ( e 52 + 1) a 11 = e 12 ( e 4 + e 4 − 1 ) + ( e 1 e 4 e 5 − 1)( e 1 e 2 − e 3 )( e 1 e 5 − e 4 ) , ( e 12 − 1) ( e 12 − 1) e 5 ( e 12 − 1)( e 1 e 3 − e 2 ) e 4 e 5 t 1 − e 1 a 12 = ( e 12 − 1) 2 e 2 ( e 1 e 3 − e 2 ) e 4 e 5 t 1 × (( e 1 e 3 e 5 + e 1 e 2 e 4 )( t 1 + 1) − e 2 e 5 ( e 12 + t 1 ) − e 3 e 4 (1 + e 12 t 1 )) × (( e 1 e 3 e 4 e 5 + e 1 e 2 )( t 1 + 1) − e 2 e 4 e 5 ( e 12 + t 1 ) − e 3 (1 + e 12 t 1 )) , a 21 = e 2 ( e 1 e 5 − e 4 )( e 1 e 4 e 5 − 1) , e 1 ( e 1 e 3 − e 2 ) e 4 e 5 t 1 + e 1 ( e 52 + 1) a 22 = − ( e 4 + e 4 − 1 ) − ( e 1 e 4 e 5 − 1)( e 1 e 2 − e 3 )( e 1 e 5 − e 4 ) . ( e 12 − 1) ( e 12 − 1) e 5 ( e 12 − 1)( e 1 e 3 − e 2 ) e 4 e 5 t 1

  61. P ′ γ 5 e 5 e 4 For example, we have γ 4 tr( ρ ( γ 3 γ 4 )) = a 1 ( e 1 , t 1 ) , γ 1 a 2 γ 2 e 3 e 2 γ 3 P a 1 = − ( e 2 e 3 − e 1 )( e 1 e 3 − e 2 ) ( e 4 e 5 − e 1 )( e 1 e 4 − e 5 ) t 1 e 1 e 2 e 3 e 1 e 4 e 5 − (1 − e 1 e 2 e 3 )( e 1 e 2 − e 3 ) (1 − e 1 e 4 e 5 )( e 1 e 5 − e 4 ) 1 e 1 e 2 e 3 e 1 e 4 e 5 t 1 + χ 1 ( χ 3 χ 5 + χ 2 χ 4 ) − 2( χ 2 χ 5 + χ 3 χ 4 ) , a 2 =( e 1 − e 1 − 1 ) 2 . where χ i = e i + e i − 1 . 41

  62. δ 1 α 2 One holed torus ( e 1 , t 1 ) Define a pants decomposition, a dual e 2 graph and the parameters e 1 , e 2 , t 1 as β 1 in the right Figure. Then we have α 1    e 1 e − 1 − e − 1 1 e − 1  , 1 2 ρ ( α 1 ) = e − 1 0 1    ( e 2 − e 2 1 1 ) t 1 + ( e 2 − 1) ( t 1 + 1)(1 − e 2 ) ρ ( β 1 ) =  √− e 2 t 1 ( e 2 − e 2 ( e 2 e 2 ( e 2 1 − 1) 1 − 1) 1 − 1) 42

  63. ( e 1 , t 1 ) ( e 3 , t 3 ) ( e 2 , t 2 ) Closed surface of genus 2 ( ) e − 1 0 1 ρ ( α 1 ) = , − e 1 + e − 1 2 e 3 e 1 ( ) e 1 e − 1 e 2 − e 1 e − 1 3 3 β 2 ρ ( α 2 ) = , β 1 − e − 1 + e 1 e − 1 e 2 + e − 1 − e 1 e − 1 2 3 2 3 α 1 α 2 ( ) ( ) 1 1 a 11 a 12 b 11 b 12 ρ ( β 1 ) = √ t 1 t 3 , ρ ( β 2 ) = √ t 2 t 3 , ( e 22 − 1) e 3 a 21 a 22 b 21 b 22 a 12 = − ( e 2 e 3 − e 1 )( t 3 + 1) a 21 = e 1 ( t 1 + 1)( e 1 e 2 − e 3 ) a 11 = 1 , , e 1 ( e 32 − 1) ( e 12 − 1) e 2 a 22 = ( e 1 e 2 e 3 − 1)( e 1 e 3 − e 2 ) t 1 t 3 − ( e 1 e 2 − e 3 )( e 2 e 3 − e 1 )( t 1 + t 3 + 1) , ( e 12 − 1) e 2 ( e 32 − 1) b 11 = ( e 1 e 2 − e 3 ) t 2 − e 2 ( e 2 e 3 − e 1 ) , b 12 = − ( e 2 e 3 − e 1 )( e 3 ( e 1 e 2 e 3 − 1) t 2 t 3 + ( e 3 − e 1 e 2 ) t 2 + e 2 e 3 ( e 2 − e 1 e 3 ) t 3 − e 2 ( e 1 − e 2 e 3 )) / ( e 1 ( e 32 − 1)) , b 21 = ( e 1 e 2 − e 3 )( t 2 + 1) , b 22 = − ( e 3 ( e 1 e 2 e 3 − 1)( e 2 e 3 − e 1 ) t 2 t 3 − e 3 ( e 1 e 2 − e 3 )( e 1 e 3 − e 2 ) t 3 + ( e 1 e 2 − e 3 )( e 2 e 3 − e 1 )(1 + t 2 )) / ( e 1 ( e 32 − 1)) . 43

  64. Action of ( Z / 2 Z ) 3 g − 3 For each pair of pants, ( Z 2 ) 3 acts on the eigenvalues as e 1 �→ e 1 − 1 , e 2 �→ e 2 − 1 , e 3 �→ e 3 − 1 . In general the action affects on the twist parameters: e 5 e 4 ( e 1 , t 1 ) �→ ( e 1 − 1 , t 1 − 1 ) , ( e 2 , t 1 ) �→ ( e 2 − 1 , e 2 e 3 − e 1 · e 1 e 3 − e 2 t 1 ) , 1 − e 1 e 2 e 3 e 1 e 2 − e 3 e 3 �→ e − 1 3 , ( e 1 , t 1 ) e 4 �→ e 4 − 1 , ( e 5 , t 1 ) �→ ( e 5 − 1 , e 4 e 5 − e 1 · e 1 e 4 − e 5 t 1 ) . e 3 e 2 1 − e 1 e 4 e 5 e 1 e 5 − e 4 44

  65. Globally ( Z 2 ) 3 g − 3 acts on the parameter space E ( S, C ) × T where T = ( C \ { 0 } ) 3 g − 3 corresponds to the twist parameters. The map E ( S, C ) × T → X PSL ( S ) induces ( E ( S, C ) × T ) / ( Z 2 ) 3 g − 3 → X PSL ( S ) . This is not injective since we can change the signs of the eigen- value parameters as ( e i , e j , e k ) �→ ( ε i e i , ε j e j , ε k e k ) for ε i ε j ε k = 1 if ( e i , e j , e k ) belongs to a pair of pants. Globally the group is isomorphic to H 1 ( G ; Z 2 ) ∼ = ( Z 2 ) g . Theorem (( E ( S, C ) × T ) / ( Z 2 ) 3 g − 3 ) / ( Z 2 ) g injective − − − − − − → X PSL ( S ) . 45

  66. Globally ( Z 2 ) 3 g − 3 acts on the parameter space E ( S, C ) × T where T = ( C \ { 0 } ) 3 g − 3 corresponds to the twist parameters. The map E ( S, C ) × T → X PSL ( S ) induces ( E ( S, C ) × T ) / ( Z 2 ) 3 g − 3 → X PSL ( S ) . This is not injective since we can change the signs of the eigen- value parameters as ( e i , e j , e k ) �→ ( ε i e i , ε j e j , ε k e k ) for ε i ε j ε k = 1 if ( e i , e j , e k ) belongs to a pair of pants. Globally the group is isomorphic to H 1 ( G ; Z 2 ) ∼ = ( Z 2 ) g . Theorem (( E ( S, C ) × T ) / ( Z 2 ) 3 g − 3 ) / ( Z 2 ) g injective − − − − − − → X PSL ( S ) . 45-a

  67. Globally ( Z 2 ) 3 g − 3 acts on the parameter space E ( S, C ) × T where T = ( C \ { 0 } ) 3 g − 3 corresponds to the twist parameters. The map E ( S, C ) × T → X PSL ( S ) induces ( E ( S, C ) × T ) / ( Z 2 ) 3 g − 3 → X PSL ( S ) . This is not injective since we can change the signs of the eigen- value parameters as ( e i , e j , e k ) �→ ( ε i e i , ε j e j , ε k e k ) for ε i ε j ε k = 1 if ( e i , e j , e k ) belongs to a pair of pants. Globally the group is isomorphic to H 1 ( G ; Z 2 ) ∼ = ( Z 2 ) g . Theorem (( E ( S, C ) × T ) / ( Z 2 ) 3 g − 3 ) / ( Z 2 ) g injective − − − − − − → X PSL ( S ) . 45-b

  68. � � � � This map gives a parametrization of the representations sat- isfying (i) and (ii). In particular, it contains all quasi-Fuchsian representations. As a summary, we have the following diagram: ( Z 2 ) 3 g − 3 X SL ( S ) Y H 1 ( G ; Z 2 ) H 1 ( S ; Z 2 ) E ( S, C ) × T H 1 ( G ; Z 2 ) ( Z 2 ) 3 g − 3 ( E ( S, C ) × T/H 1 ( G ; Z 2 )) � X PSL ( S ) The horizontal maps induce injections after taking quotient. 46

  69. Coordinate change Our coordinates depend on the choice of a pants decompo- sition with a dual oriented graph. We will give a formula for coordinate change. Prop Any two pants decomposition with dual graphs are re- lated by the following five types moves. Transformation for- mulas for such moves are given as follows. 47

  70. (I) Reverse orientation Reverse the orientation of an edge of the dual graph. e 5 e 4 e 5 e 4 ( e 1 − 1 , e 1 e 2 − e 3 e 1 e 5 − e 4 e 1 e 4 − e 5 t 1 − 1 ) ( e 1 , t 1 ) e 1 e 3 − e 2 e 3 e 3 e 2 e 2 48

  71. (II) Dehn twist Change the dual graph by a (left or right) Dehn twist along a pants curve. (III) Vertex move For a vertex of the dual graph, change the edges adjacent to the vertex by their right half-twists as: These moves are (locally) expressed by compositions of the following formula: e 5 e 4 e 5 e 4 ( e 1 , − e 1 ( e 1 e 3 − e 2 ) ( e 1 , t 1 ) e 1 e 2 − e 3 t 1 ) e 3 e 3 e 2 e 2 49

  72. (IV) Graph automorphism Just change the variables by per- mutations. (V) Elementary move On a subsurface homeomorphic to a one-holed torus or a four-holed sphere, we define the moves by: (a clockwise rotation of angle π/ 2) 50

  73. The transformation formula for type (V) move is compli- cated... e 12 e 11 e 12 e 11 ( e 4 , t ′ 4 ) ( e 4 , t 4 ) ( e ′ 1 , t ′ 1 ) e 10 e 10 e 13 e 13 ( e 5 , t ′ ( e 1 , t 1 ) ( e 5 , t 5 ) 5 ) ( e 3 , t ′ 3 ) ( e 3 , t 3 ) e 9 e 9 e 6 e 6 ( e 2 , t 2 ) ( e 2 , t ′ 2 ) e 7 e 8 e 7 e 8 e 2 e ′ ( e 1 e 2 − e 3 )( e 1 e 3 − e 2 )( t 1 + 1) 1 − e 5 t ′ 2 = t 2 , e 2 e 5 − e ′ ( e 2 e 3 − e 1 )( e 1 e 3 − e 2 ) t 1 + (1 − e 1 e 2 e 3 )( e 1 e 2 − e 3 ) 1 3 = ( e 2 e 3 − e 1 )(( e 1 e 3 − e 2 )( e 1 e 4 − e 5 ) t 1 + ( e 1 e 2 − e 3 )( e 1 e 5 − e 4 )) t ′ ( e 1 e 3 − e 2 )(( e 2 e 3 − e 1 )( e 1 e 4 − e 5 ) t 1 + (1 − e 1 e 2 e 3 )( e 1 e 5 − e 4 )) t 3 , e 3 e ′ 4 = ( e 1 e 3 − e 2 )( e 1 e 4 − e 5 ) t 1 + ( e 1 e 2 − e 3 )( e 1 e 5 − e 4 ) 1 − e 4 t ′ t 4 , 1 − e 3 e 4 e ′ ( e 1 e 3 − e 2 )( e 4 e 5 − e 1 ) t 1 + ( e 1 e 2 − e 3 )(1 − e 1 e 4 e 5 ) 1 ( e 1 e 5 − e 4 )( e 1 e 4 e 5 − 1)( t 1 + 1) t ′ 5 = ( e 1 − e 4 e 5 )( e 1 e 4 − e 5 ) t 1 + ( e 1 e 4 e 5 − 1)( e 1 e 5 − e 4 ) t 5 , 51

  74. where e ′ 1 is one of the solution of x 2 − tr( ρ ( γ 3 γ 4 )) x + 1 = 0 where ( 1 − ( e 2 e 3 − e 1 )( e 1 e 3 − e 2 ) ( e 4 e 5 − e 1 )( e 1 e 4 − e 5 ) tr( ρ ( γ 3 γ 4 )) = t 1 ( e 1 − e 1 − 1 ) 2 e 1 e 2 e 3 e 1 e 4 e 5 − (1 − e 1 e 2 e 3 )( e 1 e 2 − e 3 ) (1 − e 1 e 4 e 5 )( e 1 e 5 − e 4 ) 1 e 1 e 2 e 3 e 1 e 4 e 5 t 1 + ( e 1 + e 1 − 1 ) ( ( e 3 + e 3 − 1 )( e 5 + e 5 − 1 ) + ( e 2 + e 2 − 1 )( e 4 + e 4 − 1 ) ) ( e 2 + e 2 − 1 )( e 5 + e 5 − 1 ) + ( e 3 + e 3 − 1 )( e 4 + e 4 − 1 ) )) − 2 ( . And e ′ e ′ 1 1 e 5 e 2 1 e 3 e 4 t ′ 1 = − 1 ( e 5 e 2 − e ′ 1 )( e ′ ( e 3 e 4 − e ′ 1 )( e ′ e ′ 1 + e ′ 1 e 2 − e 5 ) 1 e 3 − e 4 ) 1 ( − 1 ) ( − 1 tr( ρ ( γ 2 γ 4 ) ) ( e ′ 1 − e ′ e ′ 1 tr( ρ ( γ 3 γ 5 ) − e ′ 1 1 − 1 ) ( 5 ) ) − ( e ′ 1 + e ′ ( e 2 + e − 1 2 )( e 3 + e − 1 3 ) + ( e 4 + e − 1 4 )( e 5 + e − 1 1 4 ) )) + 2 ( ( e 3 + e − 1 3 )( e 5 + e − 1 5 ) + ( e 2 + e − 1 2 )( e 4 + e − 1 I omit the one-holed torus case. 52

  75. Geometric meaning of the twist parameters It is easy to see that { ( e i , t i ) ∈ R 2(3 g − 3) | e i < − 1 , t i > 0 } corresponds to the Fuchsian representations. Restrict to this subset, we can interpret our twist parameter as: x 5 e 5 e 4 x 4 x 1 ( e 1 , t 1 ) x 2 log | t 1 | e 2 e 3 x 3 53

  76. On the other hand, usual F-N twist parameters are defined as: log | t FN | 1 Prop Let t FN be the exponential of the usual F-N twist pa- 1 rameter. Then we have � � � ( e 1 e 3 − e 2 )( e 2 e 3 − e 1 )( e 1 e 4 − e 5 )( e 4 e 5 − e 1 ) � t FN = ( e 1 e 2 − e 3 )( e 1 e 2 e 3 − 1)( e 1 e 5 − e 4 )( e 1 e 4 e 5 − 1) t 1 . 1 54

  77. Remark is invariant under the action of ( Z / 2 Z ) 3 g − 3 up to sign. It t FN i might be a better parametrization although I do not know any appropriate choice of signs. The traces of the four holed sphere seem to be much simpler. ( √ 1 ( χ 2 1 + χ 2 2 + χ 2 tr( ρ ( γ 3 γ 4 )) = − 3 − χ 1 χ 2 χ 3 − 4) × ( e i − e i − 1 ) 2 √ ( χ 2 1 + χ 2 4 + χ 2 5 − χ 1 χ 4 χ 5 − 4)( t FN + ( t FN ) − 1 ) 1 1 ) + χ 1 ( χ 3 χ 5 + χ 2 χ 4 ) − 2( χ 2 χ 5 + χ 3 χ 4 ) where χ i = e i + e i − 1 . 55

  78. Remark is invariant under the action of ( Z / 2 Z ) 3 g − 3 up to sign. It t FN i might be a better parametrization although I do not know any appropriate choice of signs. The traces of the four holed sphere seem to be much simpler. ( 1 − ( e 2 e 3 − e 1 )( e 1 e 3 − e 2 ) ( e 4 e 5 − e 1 )( e 1 e 4 − e 5 ) tr( ρ ( γ 3 γ 4 )) = t 1 ( e 1 − e 1 − 1 ) 2 e 1 e 2 e 3 e 1 e 4 e 5 − (1 − e 1 e 2 e 3 )( e 1 e 2 − e 3 ) (1 − e 1 e 4 e 5 )( e 1 e 5 − e 4 ) 1 e 1 e 2 e 3 e 1 e 4 e 5 t 1 ) + χ 1 ( χ 3 χ 5 + χ 2 χ 4 ) − 2( χ 2 χ 5 + χ 3 χ 4 ) where χ i = e i + e i − 1 . 55-a

  79. Developing map S : a bordered surface (mainly interested in a pair of pants) T : ideal triangulation of S S of S has an ideal triangulation � � The universal cover T lifted from T . T → C P 1 is called a developing map. An equivariant map f : ∂ ∞ � v 1 � γ 2 v 3 c 1 c 1 γ 1 � γ 1 v 2 ∆ 1 p v i ∈ ∂ ∞ � γ 1 T, � γ 2 v 2 ∆ 0 ∗ γ 3 f ( v i ) ∈ C P 1 . � � c 3 c 2 c 2 c 3 γ 3 γ 2 v 3 γ 3 v 1 By Lem A , a developing map determines a representation π 1 ( S ) → PSL(2 , C ). 56

  80. T → C P 1 , we as- For a developing map f : ∂ ∞ � v 1 sign to each edge of T a complex number defined by the cross ratio [ f ( v 0 ) , f ( v 1 ) , f ( v 2 ) , f ( v 3 )] where v 2 v 3 ( v 0 , v 1 , v 2 ) and ( v 0 , v 1 , v 3 ) are ideal triangles of � T v 0 as in the right figure. Conversely, a developing map is completely determined by these complex parameters: Lem C x 0 , x 1 , x 2 : distinct points of C P 1 , z ∈ C \ { 0 } Then there exists a unique x 3 ∈ C P 1 s.t. [ x 0 , x 1 , x 2 , x 3 ] = z . (Set x 3 = x 0 ( x 2 − x 1 ) − zx 1 ( x 2 − x 0 ) .) ( x 2 − x 1 ) − z ( x 2 − x 0 )) 57

  81. T to C P 1 by Lem C inductively: We can develop � x 0 C P 1 x 5 x 3 x 1 x 2 x 4 58

  82. T to C P 1 by Lem C inductively: We can develop � x 0 C P 1 x 5 x 3 x 1 x 2 x 4 58-a

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend