dulac map and time in families of hyperbolic saddles
play

Dulac map and time in families of hyperbolic saddles David Mar n - PowerPoint PPT Presentation

Dulac map and time in families of hyperbolic saddles David Mar n (UAB) joint work with Jordi Villadelprat (URV) Advances in Qualitative Theory of Differential Equations Castro Urdiales, 1721 June 2019. Motivation: Dulac map and time as


  1. Dulac map and time in families of hyperbolic saddles David Mar´ ın (UAB) joint work with Jordi Villadelprat (URV) Advances in Qualitative Theory of Differential Equations Castro Urdiales, 17–21 June 2019.

  2. Motivation: Dulac map and time as building block Qualitative behavior (bifurcation) of the period function of a center at the outer boundary of its period annulus (polycycle). line at infinity (polar set) Difficulty: The regularity of the period function drops out at the polycycle.

  3. Motivation: Dulac map and time as building block Qualitative behavior (bifurcation) of the period function of a center at the outer boundary of its period annulus (polycycle). line at infinity (polar set) Difficulty: The regularity of the period function drops out at the polycycle. Tool: Asymptotic expansion of the period function at the polycycle, uniform with respect to parameters.

  4. Motivation: Dulac map and time as building block Qualitative behavior (bifurcation) of the period function of a center at the outer boundary of its period annulus (polycycle). Test Example: Loud family ( − y + xy ) ∂ x + ( x + Dx 2 + Fy 2 ) ∂ y , symmetric system with Darboux first integral (1 − x ) α ( y 2 − P 2 ( x )) for F ( F − 1)( F − 1 / 2) � = 0 (Liouville first integral in general). F = − D Symmetry implies half period is the Dulac time between transverse F = 1 sections located at the symmetry axis. F D D = − 1 D = 0

  5. Motivation: Dulac map and time as building block Qualitative behavior (bifurcation) of the period function of a center at the outer boundary of its period annulus (polycycle). Test Example: Loud family ( − y + xy ) ∂ x + ( x + Dx 2 + Fy 2 ) ∂ y , symmetric system with Darboux first integral (1 − x ) α ( y 2 − P 2 ( x )) for F ( F − 1)( F − 1 / 2) � = 0 (Liouville first integral in general). F = − D Symmetry implies half period is the Dulac time between transverse F = 1 sections located at the symmetry axis. Increasing period function F outside the red line, where the polycycle’s topology changes. D D = − 1 D = 0

  6. Dulac map and time of families of hyperbolic saddles Building block in hyperbolic monodromic polycycles: � � 1 P µ ( x , y ) x ∂ ∂ x + Q µ ( x , y ) y ∂ , λ = − Q µ (0 , 0) X µ = P µ (0 , 0) > 0 , x m y n ∂ y where P , Q are C ∞ functions on Ω × U ⊂ R 2 × R N amb m , n ∈ Z + . FLP: X µ is locally orbitally linearizable ( ⇐ Darboux integrable).

  7. ( L , K )-Flatness condition Definition: If W ⊂ R N +1 is an open neighborhood of { 0 } × U and f : W ∩ ((0 , + ∞ ) × U ) → R is of class C K we say that L ( µ 0 ) if ∀ ν = ( ν 0 , ν 1 , . . . , ν N ) ∈ Z N +1 f ( s ; µ ) ∈ F K , | ν | ≤ K , + ∃ V ∋ µ 0 , ∃ C , s 0 > 0 such that ∀ µ ∈ V and ∀ s ∈ (0 , s 0 ) | ∂ ν f ( s ; µ ) | ≤ Cs L − ν 0 , where ∂ ν = ∂ ν 0 s ∂ ν 1 µ 1 · · · ∂ ν N µ N and | ν | = ν 0 + ν 1 · · · + ν N .

  8. ( L , K )-Flatness condition Definition: If W ⊂ R N +1 is an open neighborhood of { 0 } × U and f : W ∩ ((0 , + ∞ ) × U ) → R is of class C K we say that L ( µ 0 ) if ∀ ν = ( ν 0 , ν 1 , . . . , ν N ) ∈ Z N +1 f ( s ; µ ) ∈ F K , | ν | ≤ K , + ∃ V ∋ µ 0 , ∃ C , s 0 > 0 such that ∀ µ ∈ V and ∀ s ∈ (0 , s 0 ) | ∂ ν f ( s ; µ ) | ≤ Cs L − ν 0 , where ∂ ν = ∂ ν 0 s ∂ ν 1 µ 1 · · · ∂ ν N µ N and | ν | = ν 0 + ν 1 · · · + ν N . Remark: s λ ◦ s L = s λ L is ( λ L , ∞ )-flat.

  9. ( L , K )-Flatness condition Definition: If W ⊂ R N +1 is an open neighborhood of { 0 } × U and f : W ∩ ((0 , + ∞ ) × U ) → R is of class C K we say that L ( µ 0 ) if ∀ ν = ( ν 0 , ν 1 , . . . , ν N ) ∈ Z N +1 f ( s ; µ ) ∈ F K , | ν | ≤ K , + ∃ V ∋ µ 0 , ∃ C , s 0 > 0 such that ∀ µ ∈ V and ∀ s ∈ (0 , s 0 ) | ∂ ν f ( s ; µ ) | ≤ Cs L − ν 0 , where ∂ ν = ∂ ν 0 s ∂ ν 1 µ 1 · · · ∂ ν N µ N and | ν | = ν 0 + ν 1 · · · + ν N . Remark: s λ ◦ s L = s λ L is ( λ L , ∞ )-flat. L ( µ 0 ) extends to a C K function ˜ Lemma: If L > K every f ∈ F K f in a neighborhood of (0 , µ 0 ) such that ∂ ν ˜ f (0; µ ) = 0 for | ν | ≤ K .

  10. ( L , K )-Flatness condition Definition: If W ⊂ R N +1 is an open neighborhood of { 0 } × U and f : W ∩ ((0 , + ∞ ) × U ) → R is of class C K we say that L ( µ 0 ) if ∀ ν = ( ν 0 , ν 1 , . . . , ν N ) ∈ Z N +1 f ( s ; µ ) ∈ F K , | ν | ≤ K , + ∃ V ∋ µ 0 , ∃ C , s 0 > 0 such that ∀ µ ∈ V and ∀ s ∈ (0 , s 0 ) | ∂ ν f ( s ; µ ) | ≤ Cs L − ν 0 , where ∂ ν = ∂ ν 0 s ∂ ν 1 µ 1 · · · ∂ ν N µ N and | ν | = ν 0 + ν 1 · · · + ν N . Remark: s λ ◦ s L = s λ L is ( λ L , ∞ )-flat. L ( µ 0 ) extends to a C K function ˜ Lemma: If L > K every f ∈ F K f in a neighborhood of (0 , µ 0 ) such that ∂ ν ˜ f (0; µ ) = 0 for | ν | ≤ K . Lemma: If L ′ > L and f ∈ F K L ′ ( µ 0 ) then f ∈ s L I K ( µ 0 ), i.e. for every n ≤ K there is a neighborhood V ∋ µ 0 such that D n ( f ( s ; µ ) / s L ) → 0 as s → 0 + uniformly on µ ∈ V , where D = s ∂ s is the Euler operator. ( I K are the Mourtada’s classes.)

  11. Unifom asymptotic expansion (in the FLP case) Theorem: For every µ 0 ∈ U there exist a neighborhood V ∋ µ 0 and polynomials D ij , T ij ∈ C ∞ ( V )[ w ] such that ∀ L ∈ R � D ( s ; µ ) = s λ s i + λ j D ij ( ω ; µ ) + F ∞ L ( µ 0 ) , 0 ≤ i + λ 0 j ≤ L � s i + λ j T ij ( ω ; µ ) + F ∞ T ( s ; µ ) = τ 0 ( µ ) log s + L ( µ 0 ) , 0 ≤ i + λ 0 j ≤ L where λ 0 = λ ( µ 0 ).

  12. Unifom asymptotic expansion (in the FLP case) Theorem: For every µ 0 ∈ U there exist a neighborhood V ∋ µ 0 and polynomials D ij , T ij ∈ C ∞ ( V )[ w ] such that ∀ L ∈ R � D ( s ; µ ) = s λ s i + λ j D ij ( ω ; µ ) + F ∞ L ( µ 0 ) , 0 ≤ i + λ 0 j ≤ L � s i + λ j T ij ( ω ; µ ) + F ∞ T ( s ; µ ) = τ 0 ( µ ) log s + L ( µ 0 ) , 0 ≤ i + λ 0 j ≤ L where λ 0 = λ ( µ 0 ). If λ 0 = p / q then ω is the Ecalle-Roussarie compensator (deformation of the logarithm − ln s = ω ( s ; 0)): � 1 x = s − α ( µ ) − 1 x − α ( µ ) dx ω ( s ; α ( µ )) := , α ( µ ) = p − λ ( µ ) q . α ( µ ) s Moreover deg D ij = deg T ij = 0 if λ 0 / ∈ ∆ ij ⊂ Q > 0 discrete subset and τ 0 ≡ 0 except for ( m , n ) = (0 , 0).

  13. Unifom asymptotic expansion (in the FLP case) Theorem: For every µ 0 ∈ U there exist a neighborhood V ∋ µ 0 and polynomials D ij , T ij ∈ C ∞ ( V )[ w ] such that ∀ L ∈ R � D ( s ; µ ) = s λ s i + λ j D ij ( ω ; µ ) + F ∞ L ( µ 0 ) , 0 ≤ i + λ 0 j ≤ L � s i + λ j T ij ( ω ; µ ) + F ∞ T ( s ; µ ) = τ 0 ( µ ) log s + L ( µ 0 ) , 0 ≤ i + λ 0 j ≤ L where λ 0 = λ ( µ 0 ). If λ 0 = p / q then ω is the Ecalle-Roussarie compensator (deformation of the logarithm − ln s = ω ( s ; 0)): � 1 x = s − α ( µ ) − 1 x − α ( µ ) dx ω ( s ; α ( µ )) := , α ( µ ) = p − λ ( µ ) q . α ( µ ) s Moreover deg D ij = deg T ij = 0 if λ 0 / ∈ ∆ ij ⊂ Q > 0 discrete subset and τ 0 ≡ 0 except for ( m , n ) = (0 , 0). Work in progress: elimination of the FLP hypothesis.

  14. Formulae for the first coefficients of the Dulac time (2018) Assume m = 0, n > 0 and define σ ij = σ ( j ) i (0), τ ij = τ ( j ) (0), i � 0 x n − 1 λ = − Q (0 , 0) T 00 = Q ( x , 0) dx , P (0 , 0) , σ 20 � u � P (0 , y ) � dy Q (0 , y ) + 1 L ( u )= exp y , λ 0 � u � Q ( x , 0) � dx M ( u )= exp P ( x , 0) + λ x . 0 ◮ If λ > 1 / n then T ( s ) = T 00 + T 10 s + s I 1 with � σ 20 Q (0 , σ 20 ) + σ 11 σ 1 /λ T 10 = − σ 21 σ n − 1 ∂ 1 Q (0 , y ) L ( y ) dy 20 20 Q (0 , y ) 2 L ( σ 20 ) y 1 /λ − n +1 0 ◮ If λ < 1 / n then T ( s ) = T 00 + T 0 n s λ n + s λ n I 1 with � M ( x ) n � � τ 10 L ( σ 20 ) λ n T 0 n τ − λ n P ( x , 0) − M (0) n dx 10 = nQ (0 , 0) + σ λ n 11 σ n x λ n +1 P (0 , 0) 0 20

  15. Formulae for the first coefficients of the Dulac time (2018) Assume m = 0, n > 0 and define σ ij = σ ( j ) i (0), τ ij = τ ( j ) (0), i Theorem (Mardeˇ si´ c-M.-Villadelprat, 2003) ◮ If λ > 1 / n then T ( s ) = T 00 + T 10 s + s I 1 with � σ 20 Q (0 , σ 20 ) + σ 11 σ 1 /λ T 10 = − σ 21 σ n − 1 ∂ 1 Q (0 , y ) L ( y ) dy 20 20 Q (0 , y ) 2 y 1 /λ − n +1 L ( σ 20 ) 0 ◮ If λ < 1 / n then T ( s ) = T 00 + T 0 n s λ n + s λ n I 1 with � τ 10 � M ( x ) n � L ( σ 20 ) λ n T 0 n τ − λ n P ( x , 0) − M (0) n dx 10 = nQ (0 , 0) + σ λ n 11 σ n x λ n +1 P (0 , 0) 0 20 ◮ If λ ≈ 1 n then T ( s ) = T 00 + s [ T 100 + T 101 ω ( s ; 1 − λ n )] + s I 1 with T 101 = (1 − λ n ) T 0 n and T 100 = T 10 + T 0 n extending to λ = 1 n .

  16. Modifying Mellin transform � ∞ 0 x α f ( x ) dx Mellin transform: f ( x ) �→ { M f } ( α ) = x . Example 0: The Gamma function  { M ( e − x ) } ( α ) if α > 0    { M ( e − x − 1) } ( α )  if α ∈ ( − 1 , 0) Γ( α ) = { M ( e − x − (1 − x )) } ( α ) if α ∈ ( − 2 , − 1)    . .  . . . . � r f ( i ) (0) x i and α / Definition-Proposition: If T r 0 f ( x ) = ∈ Z − then i ! i =0 � u k − 1 � f ( i ) (0) i !( i + α ) u i + u − α ˆ [ f ( x ) − T k − 1 f ( x )] x α − 1 dx f α ( u ) := 0 0 i =0 does not depend on k > − α .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend