parameter iden fica on with hybrid systems in a bounded
play

Parameter iden+fica+on with hybrid systems in a - PowerPoint PPT Presentation

Parameter iden+fica+on with hybrid systems in a bounded-error framework Moussa MAIGA, Nacim RAMDANI, & Louise TRAVE-MASSUYES Universit dOrlans,


  1. Parameter ¡iden+fica+on ¡with ¡hybrid ¡systems ¡ in ¡a ¡bounded-­‑error ¡framework ¡ � Moussa ¡MAIGA, ¡Nacim ¡RAMDANI, ¡& ¡Louise ¡TRAVE-­‑MASSUYES 
 Université ¡d’Orléans, ¡Bourges, ¡and ¡LAAS ¡CNRS ¡Toulouse, ¡France. ¡ � SWIM ¡2015, ¡Praha ¡ 
 9-­‑11 ¡June ¡2015

  2. Model-based FDI hybrid 
 dynamical system input / 
 measured 
 control outputs + guaranteed 
 - decision making hybrid state 
 reconstructed 
 and parameter 
 variables estimation ‣ Extend to hybrid dynamical systems 
 set-membership approaches for model-based FDI 2

  3. Outline n Hybrid dynamical systems n Set membership estimation n Hybrid reachability approach n Example n Research directions 3

  4. Hybrid Cyber-Physical Systems n Interaction discrete 
 + continuous dynamics n Safety-critical 
 embedded systems n Networked 
 autonomous systems 4

  5. Hybrid Cyber-Physical Systems n Modelling → hybrid automaton (Alur, et al. 1995) l Non-linear continuous dynamics l Bounded uncertainty e : g ( x ) ≥ 0 x ′ = r ( e, x ) l ′ l x ′ ∈ Inv( l ′ ) x ∈ Init( l ) x ∈ Inv( l ) x ′ ∈ Flow( l ′ , x ′ ) x ∈ Flow( l, x ) ˙ ˙ Continuous dynamics Discrete dynamics 5

  6. Hybrid Cyber-Physical Systems n Example : the bouncing ball initial conditions discrete transition jump 6

  7. Hybrid Cyber-Physical Systems n Example : the bouncing ball 7

  8. Hybrid Cyber-Physical Systems n Example : the bouncing ball 6 Initial conditions 5 freefall 4 Continuous transtions 3 X 2 1 0 -1 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 V Discrete transitions 7

  9. Estimation of Hybrid State n Modelling → hybrid automaton l Nonlinear continuous dynamics e : g ( x ) ≥ 0 x ′ = r ( e, x ) l Nonlinear guards sets l ′ l x ′ ∈ Inv( l ′ ) x ∈ Init( l ) x ∈ Inv( l ) x ′ ∈ Flow( l ′ , x ′ ) l Nonlinear reset functions x ∈ Flow( l, x ) ˙ ˙ � l Bounded uncertainty 8

  10. Estimation of Hybrid State n Modelling → hybrid automaton l Nonlinear continuous dynamics e : g ( x ) ≥ 0 x ′ = r ( e, x ) l Nonlinear guards sets l ′ l x ′ ∈ Inv( l ′ ) x ∈ Init( l ) x ∈ Inv( l ) x ′ ∈ Flow( l ′ , x ′ ) l Nonlinear reset functions x ∈ Flow( l, x ) ˙ ˙ � l Bounded uncertainty n Faults as discrete modes !! 8

  11. Estimation of Hybrid State n Modelling → hybrid automaton l Nonlinear … l Bounded uncertainty n Faults as a mode !! � n FDI → State Estimation 
 38000 36000 → reconstruct system variables switching sequence for upper bracketting system 34000 32000 30000 l switching sequence 28000 26000 l continuous variables 24000 22000 20000 18000 0 50 100 150 200 250 300 t 9

  12. Outline n Hybrid dynamical systems n Set membership estimation n Hybrid reachability approach n Example n Research directions 10

  13. Classical Estimation n Classical estimation is probabilistic C onfi de nce sets y s p 1 y s e(p) Optimisation of J ( e ( p )) f ( p ) p 2 n Yield valid results only if Perturbations, errors and model uncertainties with statistical properties known a priori Model structure is correct, no modeling errors 11

  14. Set Membership Estimation n Unknown but bounded-error framework Solution set p 1 Y Y Set Membership Algorithm Set membersip algorithm f ( p ) p 2 n Hypothesis Uncertainties and errors are bounded with known prior bounds A set of feasible solutions S = { p ∈ P | f ( p ) ∈ Y } = f − 1 ( Y ) ∩ P 12

  15. Set Membership Estimation n State estimation with continuous systems l Interval observers ‣ (Moisan, et al. 2009), (Meslem & Ramdani, 2011), 
 (Raïssi, et al., 2012), (El Thabet, et al. 2014) … . 13

  16. Set Membership Estimation n State estimation with continuous systems l Prediction - Correction / Filtering approaches ‣ (Raïssi et al., 2005), (Meslem, et al, 2010), 
 ( Milanese & Novara, 2011), (Kieffer & Walter, 2011) … 14

  17. Set Membership Estimation n Set inversion. Parameter estimation l Branch-&-bound, branch-&-prune, interval contractors … 
 (Jaulin, et al. 93) (Raïssi et al., 2004) 15

  18. Set Membership Estimation n State estimation with Continuous systems l Interval observers l Prediction-correction / Filtering approaches ‣ Reachability + Set inversion 
 n State estimation with Hybrid systems l Piecewise affine systems (Bemporad, et al. 2005) l ODE + CSP (Goldsztejn, et al., 2010) l Nonlinear case (Benazera & Travé-Massuyès, 2009) l SAT mod ODE (Eggers, et al., 2012) (Maïga, et al. 2015). 16

  19. Outline n Hybrid dynamical systems n Set membership estimation n Hybrid reachability approach n Example n Research directions 17

  20. Reachability based approach n Predictor-Corrector approach for hybrid systems e : g ( x ) ≥ 0 x ′ = r ( e, x ) l ′ l x ′ ∈ Inv( l ′ ) x ∈ Init( l ) x ∈ Inv( l ) x ′ ∈ Flow( l ′ , x ′ ) x ∈ Flow( l, x ) ˙ ˙ 18

  21. Reachability based approach n Predictor-Corrector approach for hybrid systems 19

  22. Hybrid Reachability Computation n Guaranteed event detection & localization l An interval constraint propagation approach l (Ramdani, et al., Nonlinear Analysis Hybrid Systems 2011) 20

  23. Hybrid Reachability Computation n Guaranteed event detection & localization l An interval constraint propagation approach l (Ramdani, et al., Nonlinear Analysis Hybrid Systems 2011) 20

  24. Hybrid Reachability Computation n Guaranteed event detection & localization l An interval constraint propagation approach l (Ramdani, et al., Nonlinear Analysis Hybrid Systems 2011) x ( t ) = f ( x , p , t ) , ˙ t 0 ≤ t ≤ t N , x ( t 0 ) ∈ [ x 0 ] , p ∈ [ p ] Time grid → t 0 < t 1 < t 2 < · · · < t N a priori [˜ x j ] actual solution x � [ x j ] [ x j + 1 ] Analytical solution for [ x ]( t ), t ∈ [ t j , t j +1 ] k − 1 ( t − t j ) i f [ i ] ([ x j ] , [ p ]) + ( t − t j ) k f [ k ] ([ ˜ [ x ]( t ) = [ x j ] + � x j ] , [ p ]) i =1 20

  25. Hybrid Reachability Computation n Guaranteed event detection & localization l An interval constraint propagation approach l (Ramdani, et al., Nonlinear Analysis Hybrid Systems 2011) 20

  26. Hybrid Reachability Computation n Guaranteed event detection & localization l An interval constraint propagation approach l (Ramdani, et al., Nonlinear Analysis Hybrid Systems 2011) 21

  27. Hybrid Reachability Computation n Detecting and localizing events l Improved and enhanced version. A faster version. l (Maïga, Ramdani, et al., IEEE CDC 2013, ECC 2014) 22

  28. Hybrid Reachability Computation n Detecting and localizing events l Improved and enhanced version. A faster version. l (Maïga, Ramdani, et al., IEEE CDC 2013, ECC 2014) 22

  29. Hybrid Reachability Computation n Detecting and localizing events l Improved and enhanced version l (Maïga, Ramdani, et al., IEEE CDC 2013, ECC 2014) 23

  30. Hybrid Reachability Computation n Detecting and localizing events l Improved and enhanced version l (Maïga, Ramdani, et al., IEEE CDC 2013, ECC 2014) 24

  31. 
 Hybrid Reachability Computation n Detecting and localizing events l Improved and enhanced version l (Maïga, Ramdani, et al., IEEE CDC 2013, ECC 2014) 
 Bouncing ball in 2D. 6 5 4 3 x2 2 1 0 -1 2 4 6 8 10 12 14 x1 25

  32. 
 Hybrid Reachability Computation n Detecting and localizing events l Improved and enhanced version l (Maïga, Ramdani, et al., IEEE CDC 2013, ECC 2014) 
 Bouncing ball in 2D. 6 3.5 5 3 4 2.5 2 3 x2 1.5 py 2 1 0.5 1 0 0 -0.5 -1 -1 -6 -3 0 3 6 2 4 6 8 10 12 14 px x1 25

  33. Set Membership Estimation n Parameter estimation with hybrid systems l Branch-&-bound, branch-&-prune, interval contractors … 
 (Eggers, Ramdani et al., 2012), (Maïga, Ramdani et al., 2015) 26

  34. Set Membership Estimation n Parameter estimation with hybrid systems l Branch-&-bound, branch-&-prune, interval contractors … 
 (Eggers, Ramdani et al., 2012), (Maïga, Ramdani et al., 2015) Need an inclusion test! 26

  35. Inclusion test 27

  36. Inclusion test 27

  37. Inclusion test Frontier of the reachable set = union of zonotopes 28

  38. Inclusion test Frontier of the reachable set = union of zonotopes 28

  39. Inclusion test Frontier of the reachable set = union of zonotopes 28

  40. Outline n Hybrid dynamical systems n Set membership estimation n Hybrid reachability approach n Example n Research directions 29

  41. Parameter identification n Hybrid Mass-Spring l Velocity-dependent damping. Mode switching driven by velocity. 30

  42. Parameter identification n Hybrid Mass-Spring l case 1 : Parameters acting on continuous dynamics. l CPU time approx. 140 mn! 31

  43. Parameter identification n Hybrid Mass-Spring l case 2 : parameters acting on discrete transition. l CPU time approx. 40 mn 32

  44. Outline n Hybrid dynamical systems n Set membership estimation n Hybrid reachability approach n Example n Research directions 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend