parameter estimation and cosmology with gravitational
play

Parameter estimation and cosmology with gravitational waves - PowerPoint PPT Presentation

. Parameter estimation and cosmology with gravitational waves Archisman Ghosh International Centre for Theoretical Sciences Chennai Mathematical Institute 2015 Mar 03 With contributions from: Walter Del Pozzo, Ajith Parameswaran Abhirup


  1. . Parameter estimation and cosmology with gravitational waves Archisman Ghosh International Centre for Theoretical Sciences Chennai Mathematical Institute 2015 Mar 03 With contributions from: Walter Del Pozzo, Ajith Parameswaran Abhirup Ghosh, Siddharth Mohite T A T A I N S T I T U T E O F F U N D A M E N T A L R E S E A R C H �����������������������������������������������

  2. . . Detection of gravitational waves round the corner! – first data from Adv-LIGO upcoming from the O1 runs . . . – first detections expected soon after. GW observations ⇒ physics / astrophysics. Estimation of parameters is a crucial step in getting any physics output from gravitational-wave observations. [Background: LIGO Hanford Observatory] 1 of 35

  3. . Science with GW observations ✛ ✘ Gravitational-wave observations ✚ ✙ ⇋ ⇋ ⇋ Waveform Cosmological Stellar evolution, Triggered searches, Test of GR Rates, horizon modelling parameters Population / rates masses, spin, e.o.s. ✛ ✘ ✛ ✘ ✛ ✘ Physics Cosmology Astronomy ✚ ✙ ✚ ✙ ✚ ✙ 2 of 35

  4. . Parameter estimation as a crucial step ♣ Astrophysics: “Where in the sky?” “What masses / angular momenta?” ♣ Cosmology: “What redshifts and distances?” ♣ Fundamental physics: “E.o.s. of NS?”, “Parameters of non-GR theories?” “Consistency between observed parameters?” 3 of 35

  5. . This talk ♣ Basics Detectors, sensitivity, sources ♣ Parameter estimation Parameter estimation as a challenge Procedure, algorithms employed, some results ♣ Cosmology Cosmology motivation Prospects of cosmology with GW ♣ Future directions 4 of 35

  6. . Basics

  7. . Detectors Detector network and baselines ( ms ) [Source: http://www.gw-indigo.org, Pic: B. S. Sathyaprakash] LIGO detectors in Hanford, Livingston (U.S.A) and Virgo in Cascina (Italy). KAGRA (Japan) and LIGO India . . . 5 of 35

  8. . Sensitivity 10 − 21 ♣ Ad-LIGO has 10 times more sen- AdvLIGO ZDHP Noise strain amplitude (Hz − 1 / 2 ) sitivity than initial LIGO; one can 10 − 22 survey 1000 times the volume of the sky. 10 − 23 Amplitude detectors! 10 − 24 10 1 10 2 10 3 Frequency (Hz) 10 1 1.4 Horizon distance (Gpc) Cosmological red shift 10 0 0.2 10 − 1 [ https://www.advancedligo.mit.edu ] 0.0 10 0 10 1 10 2 10 3 M z [ M � ]

  9. . Sources Compact binary coalescences (CBCs): Mergers of binary systems of NS / BH ⇒ well-modelled “chirp” waveform. “Chirp” NS-NS: Ringdown Expected rates ∼ 40 (0 . 4 – 400) yr − 1 , BH-QNM Horizon distance ∼ 0 . 4 Gpc . Inspiral Merger Post-Newtonian Numerical Relativity NS-BH: Expected rates ∼ 20 (0 . 2 – 300) yr − 1 , [Hannam et al (2009)] Horizon distance ∼ 1 Gpc . 10 1 1.4 NS-NS: Horizon distance (Gpc) Cosmological red shift Expected rates ∼ 40 (0 . 4 – 1000) yr − 1 , Horizon distance: ∼ 8 Gpc . 10 0 0.2 [Abadie et al (2010)] Bala’s talk! 10 − 1 0.0 7 of 35 10 0 10 1 10 2 10 3 M z [ M � ]

  10. . Parameter estimation

  11. . What parameters to estimate? { m 1 , m 2 ,� s 1 ,� s 2 } : Intrinsic parameters. { α, δ, z , d L , ι, ψ, φ c , t c } : Extrinsic parameters. The masses are completely degenerate with the redshift and it is only possible to measure the redshifted mass, m z ≡ m (1 + z ). ( m z 1 m z 2 ) 3 / 5 redshifted chirp mass, M z ≡ phase 2 ) 1 / 5 , very accurately ⇒ ( m z 1 + m z mass ratio, q ≡ m 2 m 1 , to a reasonable degree ⇒ the combination, M z cos 2 ι amplitude , very accurately ⇒ d L amplitude d L to a reasonable degree ⇒ 8 of 35

  12. . The challenge! {M , q ,� s 1 ,� s 2 , α, δ, d L , ι, ψ, φ c , t c } 9 parameters for non-spinning binaries. 15 parameters including spin. Additional parameters (tidal, etc. terms) for NS. Likelihood multimodal [Plot by: Siddharth Mohite] 9 of 35

  13. . Bayesian Inference Bayesian parameter estimation: stochastic technique to sample the posterior probability on the parameters given the data and a prior. Ω | data , I ) = Prior ( � Ω | I ) L (data | � Ω , I ) Posterior ( � Evidence (data , I ) � Ω = {M , q ,� s 1 ,� s 2 , α, δ, d L , ι, ψ, φ c , t c } L (data | � Ω , I ) = P (data | signal( � data = signal( � Ω) , I ) Ω) + noise, n � �� − 1 � data − signal( � Ω) | data − signal( � = exp Ω) 2 10 − 21 AdvLIGO ZDHP ) Noise strain amplitude (Hz − 10 − 22 S ( f ) || n ( f ) || 2 � � n | n � ≡ df S 2 ( f ) 10 − 23 Gaussian noise 10 − 24 10 of 35 10 1 10 2 10 3 Frequency (Hz)

  14. . Algorithms and software Documented in: Veitch et al (2014) The parameter estimation algorithms are implemented LIGO Algorithms Library (LAL) as LALInference . ♣ LALInferenceMCMC : Parallel tempering ♣ LALInferenceNest : Nested sampling ♣ LALInferenceBambi : Multinest ♣ pyPE : Ensemble samplers, etc. [Siddharth Mohite, AG, Walter Del Pozzo] . 11 of 35

  15. . Estimated parameters . . . 3 detectors: HLV 5 detectors: HLVIJ M z ( M ⊙ ) 12 of 35

  16. . Parameter estimation of high-mass BBH AG, Walter Del Pozzo, P. Ajith ♣ Uniform distribution of m 1 , 2 ∈ [20 , 50] M ⊙ . ♣ z � 0 . 5. ♣ SNR ≥ 8. LALInference ⇒ Usual (redshifted) quantities, {M z , q , m z 1 , 2 , d L } Compute: Physical (non-redshifted) quantities, {M , m 1 , 2 } NR fit formulae to compute mass and spin of final BH: � �� � η − 0 . 4333 η 2 − 0 . 4392 η 3 � M f = M 1 + 8 / 9 − 1 , √ a f 12 η − 3 . 87 η 2 + 4 . 028 η 3 . = M f [Pan et al (2011)] 13 of 35

  17. . NR FIT Distribution of 1 − σ errors REDSHIFTED Measurement of parameters 5 det 3 det 3 det (spin) 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 ∆ m z 1 , 2 / m z ∆ M z f / M z ∆ M z / M z ∆ M z / M z 1 , 2 f Distribution of 1 − σ errors PHYSICAL 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 ∆ m 1 , 2 / m 1 , 2 ∆ M / M ∆ M / M ∆ M f / M f Distribution of 1 − σ errors UNAFFECTED 0 10 20 30 40 50 60 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 00 0 . 02 0 . 04 0 . 06 0 . 08 0 . 10 sky loc. (sq. deg.) ∆ d L / d L ∆ η / η ∆ a f / a f AG, Walter Del Pozzo, P. Ajith ( in preparation ) 14 of 35

  18. . MASSES Parameter 3 detector 5 detector Component masses m 1 , 2 13.9% 12.9% Total mass M 11.4% 7.5% Chirp mass M 11.0% 6.5% Final mass M f 11.7% 7.6% Mass ratio q 31.6% 29.2% Symmetric mass ratio η 3.7% 3.1% Final spin a f / M f 3.1% 2.6% Luminosity distance d L 47.1% 30.0% Sky location Ω (sq. deg.) 12.50 2.39 COMPONENT FINAL SPIN

  19. . Cosmology

  20. . Measuring cosmological parameters Which cosmological parameters? Sriram’s talk. H 0 : Hubble parameter Ω m : Matter fraction Ω K : Curvature fraction Ω Λ : Dark energy fraction Ω r + Ω m + Ω k + Ω Λ = 1 ≈ 0 � � a ˙ a ¨ − Ω r − 1 a = H 2 a ≡ H 0 ; 2Ω m + Ω Λ 0 Expansion and acceleration of the universe. Measurable is redshift ⇒ Redshift-distance relation: � z dz ′ � Ω m (1 + z ) 3 + Ω K (1 + z ) 2 + Ω Λ d L = c (1 + z ) H ( z ′ ) , H ( z ) = H 0 15 of 35

  21. . Standard candles ♣ Sources of known luminosity – like Supernovae of Type Ia. . Sriram’s talk. [Perlmutter, Schmidt – Measuring Cosmology [Kim et al (1997)] with Supernovae (2003)] 16 of 35

  22. . Necessity of new input . ♣ Calibration relies on multiple steps in the cosmic distance ladder and a large amount of systematics can creep in. ♣ There is a large variability in the light-curves of SNIa and their physics is not fully understood. 0.992 72 ♣ Even the Hubble parameter is 0.984 70 not measured to a great accuracy! 0.976 0.968 68 H 0 ♣ Tension between supernova and n s 0.960 66 Planck results! 0.952 Sriram’s talk. 0.944 ♣ An independent measurement 64 0.936 will be of prime significance. 0.26 0.30 0.34 0.38 Ω m [PLANCK Collaboration (2013)] 17 of 35

  23. . Standard sirens ♣ Gravitational wave give direct access to the luminosity distance to the event without relying on any distance ladder. ♣ They can be used as “standard sirens” “Chirp” analogous to supernovae as standard Ringdown BH-QNM candles. Inspiral ♣ Unfortunately the redshift is totally de- Merger Post-Newtonian Numerical Relativity generate with mass and cannot be inde- [Hannam et al (2009)] pendently estimated. 18 of 35

  24. . Cosmology ⇋ Redshift Use cosmology: distance → redshift ⇒ physical masses. Use redshift information from coincident electromagnetic event: redshift + distance ⇒ cosmology. Opens up the possibility of an independent measurement of the cosmological parameters with an entirely different systematics. 19 of 35

  25. . NS mergers ⇔ Sh-GRBs ♣ A CBC involving a NS is believed to be associated with a Sh-GRB. Resmi’s talk. [http://www.astro.caltech.edu/ avishay] ♣ Redshift of the coincident e.m. event. [Nissanke et al (2010), Nissanke et al (2013)] 0.25 Measurement error in H 0 0.2 0.15 0.1 0.05 0 0 5 10 15 20 25 Number of GW−EM NS−NS mergers 20 of 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend