panel data analysis part i classical methods background
play

Panel Data Analysis Part I Classical Methods: Background Material - PowerPoint PPT Presentation

Panel Data Analysis Part I Classical Methods: Background Material James J. Heckman University of Chicago Econ 312, Spring 2019 Heckman Part I Review of the Early Econometric Literature on the Problem Heckman Part I Y it = X it +


  1. Panel Data Analysis Part I – Classical Methods: Background Material James J. Heckman University of Chicago Econ 312, Spring 2019 Heckman Part I

  2. Review of the Early Econometric Literature on the Problem Heckman Part I

  3. • Y it = X it β + ε it i = 1 , . . . , I , and t = 1 , . . . , T • Y i · = X i · β + ε i · i = 1 , . . . , I • Y i · = � T X i · = � T Y it X it T , t =1 t =1 T • Y i = ( Y i 1 , . . . , Y iT ) , X i = ( X i 1 , . . . , X iT ) • ε it = f i + U it Heckman Part I

  4. • E ( f i ) = E ( U it ) = 0 • E ( f 2 i ) = σ 2 E ( U 2 it ) = σ 2 f U • E ( f i f i ′ ) = 0 i � = i ′ • U it is iid for all i , t . • Assume that X it is strictly exogenous: • E ( U it + f i | X i 1 , . . . , X iT ) = 0 all t . • Also distribution of the X i = ( X i 1 , . . . , X iT ) ′ does not depend on β . Cov ( ε i , t , ε i , t ′ ) = σ 2 f σ 2 f ρ = (intraclass correlation coefficient) σ 2 f + σ 2 u Heckman Part I

  5. • Look at covariance matrix for ε i = ( ε i 1 , . . . , ε iT ) ′   1 ρ ρ ...   i ε i ) = ( σ 2 f + σ 2 E ( ε ′ u )  = A . ρ ρ  ρ ρ 1 Heckman Part I

  6. • Now stack all of the disturbances (in groups of T ) • ε = ( ε 1 , ε 2 . . . ε I )   0 0 0 A 0 A 0 0   E ( εε ′ ) = Ω � = I =   0 0 0 A   0 0 0 A Heckman Part I

  7. • T × T blocks • stack X i into a supervector X • stack Y i into a supervector Y • Then, we have that GLS estimator is ˆ β GLS = ( X ′ Ω − 1 X ) − 1 ( X ′ Ω − 1 Y ) • OLS applied to the data yields unbiased but inefficient estimators of β (because of exogeneity of X it with respect to ε it ). • But computer program produces the wrong standard errors. • Correct standard errors are: σ 2 ( X ′ X ) − 1 ( X ′ Ω X )( X ′ X ) − 1 • OLS standard errors to assume to be σ 2 ( X ′ X ) − 1 . • ∴ inferences based on OLS models are incorrect. Heckman Part I

  8. • Write A = (1 − ρ ) I + ριι ′ • ι is a T × 1 vector of 1 ’ s   . .   1- ρ 0 0 . ρ ρ ρ ρ .   . ρ ρ ρ ρ  0 1- ρ 0 .    A = +     . ρ ρ ρ ρ   .   0 0 1- ρ .   · · · · · · · · · · · · · · · · · · · · · · · · A − 1 = λ 1 ιι ′ + λ 2 I Heckman Part I

  9. • Where − ρ λ 1 = (1 − ρ )(1 − ρ + T ρ ) 1 λ 2 = 1 − ρ . Heckman Part I

  10. • Proof: AA − 1 = I (direct multiplication). What is the GLS estimator doing? ˆ β GLS = ( X ′ Ω − 1 X ) − 1 ( X ′ Ω − 1 Y )   . . A − 1 0 0 0 .   . .   A − 1 0 0 0 . Ω − 1 =   .   . A − 1 0 0 0 .     . . A − 1 0 0 0 .     X 1 Y 1 X 2 Y 2         X = Y =  . . .  .   .  . .    X I Y I Heckman Part I

  11. • Thus, we conclude that � � − 1 � � I I � � ˆ i A − 1 X i i A − 1 Y i β GLS = X ′ X ′ i =1 i =1 • Use the expression for A − 1 given above: � � I I I X ′ i ιι ′ X i � � � i A − 1 X i = T λ 1 X ′ X ′ + λ 2 i X i T i =1 i =1 i =1 Heckman Part I

  12. • Look at ι ′ X i = X i · T a K vector of means. • Now look at the GLS estimator it is a function of within and between variation. Heckman Part I

  13. • Total sum of squares I � X ′ T XX = i X i i =1 Within Deviations ( T × K ) X i − ιι ′ X i − ι X ′ = T X i i · [ I − ιι ′ = T ] X i Heckman Part I

  14. • Observe: � � � � I − ιι ′ I − ιι ′ = I − ιι ′ (idempotent) T T T X i is T × K , X ′ i is 1 × K . • Thus, we have that within variation is given by I i ( I − ιι ′ � X ′ T ) X i = W XX i =1 I I X ′ i ιι ′ X i � � B XX = T X ′ i · X i · = T i =1 i =1 T XX = W XX + B XX ���� ���� within between Heckman Part I

  15. • GLS estimator is given by taking � � � � I I X ′ i ιι ′ X i X ′ i ιι ′ X i � � + λ 2 + W XX T λ 1 T T i =1 i =1 � � I X ′ i ιι ′ X i � = λ 2 W XX + ( λ 2 + T λ 1 ) T i =1 = λ 2 W XX + ( λ 2 + T λ 1 ) B XX . Heckman Part I

  16. • There is a similar decomposition for other term and we get that ˆ [ λ 2 W XX + ( λ 2 + T λ 1 ) B XX ] − 1 β GLS = · [ λ 2 W XY + ( λ 1 + T λ 2 ) B XY ] Heckman Part I

  17. • Define θ = 1 + T λ 1 ρ = 1 − T (1 − ρ + T ρ ) λ 2 θ = 1 − ρ + T ρ − T ρ 1 − ρ = 1 − ρ + T ρ 1 − ρ + T ρ ˆ β GLS = [ W XX + θ B XX ] − 1 [ W XY + θ B XY ] . • 2 estimators are averaged together: Take first estimator the within estimator. Heckman Part I

  18. • This is simply given by taking derivations from mean: Y it − Y i · = ( X it − X ι · ) β + U it − U i · X i · β + f i + ¯ Y i · = U i · • ∴ subtracting Y i · produces an estimator free of f i . • Doing that eliminates the fixed effects from the model. Thus, we have that ˆ ( W XX ) − 1 W XY = β W ˆ ( B XX ) − 1 B XY β B = Heckman Part I

  19. • Simply average over the groups and we are done. ( W XX )ˆ = β W W XY ( B XX )ˆ β B = B XY [ W XX + θ B XX ]ˆ W XX ˆ β W + θ ( B XX )ˆ = β GLS β B • ∴ we have that β GLS = [ W XX + θ B XX ] − 1 [ W XX ˆ ˆ β W + θ B XX ˆ β B ] . • For a scalar regressor ˆ β GLS lies between ˆ β W and ˆ β B . • (But not, necessarily so, for the general regressor case). Heckman Part I

  20. • Now suppose ρ = 0 = ⇒ λ 1 = 0 = ⇒ θ = 1 . • Then ˆ β GLS is simply OLS. Suppose that ρ = 1. • A is singular, A − 1 doesn’t exist. • If we have that regressors are fixed over the spell for the case W XX = 0 and GLS is between estimator. Heckman Part I

  21. • Suppose that T → ∞ , ρ � = 0 ( T λ 1 ) − ρ T lim = lim (1 − ρ + T ρ ) λ 2 T →∞ T →∞ − ρ = lim → − 1 1 − ρ T →∞ + ρ T • ∴ θ = 0 • ∴ [ˆ β GLS = ˆ β W ]. Heckman Part I

  22. • In this case, the within estimator is the efficient estimator. • Now A − 1 matrix itself can be written in an interesting fashion and provides an example of another interpretation of the estimator. • A − 1 = λ 2 ( I − k ιι ′ ) where k is given by − λ 1 λ 2 [ I − c ιι ′ ][ I − c ιι ′ ] I − c ιι ′ − c ιι ′ + Tc 2 ιι ′ = I − (2 c − Tc 2 ) ιι ′ = where 2 c − Tc 2 = − λ 1 F = I − c ιι ′ . , λ 2 Heckman Part I

  23. • Solve to get � � � c = 1 1 − ρ 1 − 1 − ρ + ρ T T • ∴ GLS estimator is of the form � � − 1 � � I I � � ˆ i A − 1 X i ) i A − 1 Y i β GLS = ( X ′ X ′ . i =1 i =1 Heckman Part I

  24. • But this is ⇔ to transforming the data in the following way Y i = X i β + ε i = FX i β + F ε i FY i FY i = Y i − ( cT ι ) Y i · ι ′ Y i Y i · = T • The mean value of Y i for person i over sample period T . FX i = X i − ( cT ) ι X ′ i . • Now, suppose that we have ρ = 0 , c = 0 , GLS is OLS applied to data. Heckman Part I

  25. Standard Errors for Fixed Effect; Estimator IS Produced by OLS Formula; GLS is OLS Heckman Part I

  26. • Proof:         0 0 Y 1 ι Y 2 0 ι 0         =  =  f i +  f 2 + Y  f N         · · · · · · · · · · · ·     Y N 0 0 ι     X 1 U 1  β + + · · · · · ·    X N U N     Y i 1 X i 1 Y i = · · · X i = · · ·     Y iT X iT i ) = σ 2 I T E ( U i U ′ E ( U i U ′ j ) = 0 , i � = j . Heckman Part I

  27. • Define F = I − ιι ′ T . • Partition Y i = X i β + if i + U i Heckman Part I

  28. • Using ( F ) + ιι ′ T = I � ιι ′ � F = 0 T FY i = FX i β + FU i ιι ′ T Y i = ιι ′ T X i β + ιι ′ T U i � � − 1 � � I I � � ˆ X ′ X ′ β W = i FX i i FY i . i =1 i =1 Heckman Part I

  29. • Let � � I � B = X ′ i FX i . i =1 �� � � I N � � Var ˆ = ( B ) ′ E X ′ U ′ β W i FU i i FX i B i =1 i =1 � � I � σ 2 = B ′ ( X ′ i F ) FX ′ B U i i =1 � σ 2 i FX i ) − 1 = U ( X ′ where � ιι ′ � � ιι ′ � = ιι ′ T . T T • This is OLS variance covariance. Heckman Part I

  30. • Between Estimator: � N �� − 1 � N � � ιι ′ ιι ′ � � ˆ = X i T X ′ X i T Y i β B i i =1 i =1 N N ιι ′ ii ′ � � = β + X i T U i + X i T f i i =1 i =1 • Now ˆ β B uncorrelated with ˆ β W because f i ⊥ ⊥ U j all i , j ; Heckman Part I

  31. �� � − 1 � σ 2 � � � ιι ′ ˆ T + σ 2 U = T X ′ Var β B X i i f �� X i ιι ′ X ′ � �� � − 1 ιι ′ i · T X ′ X i i T � � �� � − 1 f + σ 2 ιι ′ σ 2 U = X i T X ′ . i T Heckman Part I

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend