p roblem 1
play

P ROBLEM 1 How to show concentration of the shape of market weights? - PowerPoint PPT Presentation

T RANSPORT INEQUALITIES FOR STOCHASTIC PROCESSES Soumik Pal University of Washington, Seattle Jun 6, 2012 I NTRODUCTION Three problems about rank-based processes T HE A TLAS MODEL Define ranks: x ( 1 ) x ( 2 ) . . . x ( n ) . Fix


  1. T RANSPORT INEQUALITIES FOR STOCHASTIC PROCESSES Soumik Pal University of Washington, Seattle Jun 6, 2012

  2. I NTRODUCTION Three problems about rank-based processes

  3. T HE A TLAS MODEL ◮ Define ranks: x ( 1 ) ≥ x ( 2 ) . . . ≥ x ( n ) . Fix δ > 0. ◮ SDE in R n : � t 1 { X i ( s ) = X ( n ) ( s ) } ds + W i ( t ) , X i ( t ) = x 0 + δ ∀ i . 0 ◮ The market weight: S i ( t ) = exp ( X i ( t )) , S i µ i ( t ) = ( t ) . S 1 + S 2 + . . . + S n ◮ Banner, Fernholz, Karatzas, P .- (Pitman, Chatterjee), Shkolnikov, Ichiba and several more.

  4. A CURIOUS SHAPE Power law decay of real market weights with rank: 1e � 02 ◮ log µ ( i ) vs. log i . 1e � 04 ◮ Dec 31, 1929 - 1999 . 1e � 06 ◮ Includes all NYSE, AMEX, and NASDAQ. 1e � 08 1 5 10 50 100 500 1000 5000 Figure 1: Capital distribution curves: 1929–1999

  5. P ROBLEM 1 ◮ How to show concentration of the shape of market weights? ◮ Fix J ≪ N . Linear regression through ( log i , log µ ( i ) ( t )) , 1 ≤ i ≤ J . ◮ Slope − α ( t ) . ◮ Estimate fluctuation of the process { α ( s ) , 0 ≤ s ≤ T } .

  6. P ROBLEM 2 ◮ Lipschitz functions F 1 ( T , B ( T )) , . . . , F d ( T , B ( T )) . ◮ Define M i ( t ) := E [ F i ( T , B ( T )) | B ( t )] . ◮ Suppose � � sup M i ( t ) ≤ a ( t ) , 0 ≤ t ≤ T ≥ 1 / 2 . P i ◮ What is √ � � sup t , 1 ≤ t ≤ T | sup M i ( 1 ) > a ( 1 ) P M i ( t ) > a ( t ) + α ? i i

  7. P ROBLEM 3 ◮ Back to rank-based models. ◮ Suppose V π ( t ) wealth ( V π ( 0 ) = 1 ) - portfolio π . ◮ π = µ - market portfolio. ◮ How does V π compare with V µ ? P ( V π ( t ) / V µ ( t ) ≥ a ( t )) ≤ exp ( − r ( t )) , explicit a ( t ) and r ( t ) .

  8. And now the answers ...

  9. P ROBLEM 1: FLUCTUATION OF SLOPE T HEOREM (P.-’10, P.-S HKOLNIKOV ’10) Suppose market weights are running at equilibrium. Take T = N /δ 2 . α = sup 0 ≤ s ≤ T α ( s ) . Let ¯ √ − r 2 � � � � ≤ 2 exp P α > m α + r ¯ N . 2 σ 2 Here m α = median and σ 2 = σ 2 ( δ, J ) .

  10. P ROBLEM 2: BAD PRICES T HEOREM (P. ’12) For some absolute constant C > 0 : √ � � ≈ CT − α 2 / 8 . sup t , 1 ≤ t ≤ T | sup M i ( 1 ) > a ( 1 ) M i ( t ) > a ( t ) + α P i i Compare with square-root boundary crossing.

  11. P ROBLEM 3: P ERFORMANCE OF PORTFOLIOS ◮ Symmetric functionally generated portfolio G . ◮ π depends only on market weights. ◮ Market, diversity-weighted, entropy-weighted portfolios. T HEOREM (I CHIBA -P.-S HKOLNIKOV ’11) Let R ( t ) = V π ( t ) / V µ ( t ) . R ( t ) ≥ c + G ( µ ( t )) / G ( µ ( 0 )) ≤ exp − α + t � � � � P R ( t ) ≤ c − G ( µ ( t )) / G ( µ ( 0 )) ≤ exp − α − t � � � � P . Here c ± , α ± explicit.

  12. Transportation - Entropy - Information Inequalities

  13. T RANSPORTATION I NEQUALITIES TCI (Ω , d ) - metric space. P , Q - prob measures. π [ Ed p ( X , X ′ )] 1 / p . W p ( Q , P ) = inf

  14. T RANSPORTATION I NEQUALITIES TCI (Ω , d ) - metric space. P , Q - prob measures. π [ Ed p ( X , X ′ )] 1 / p . W p ( Q , P ) = inf ◮ P satisfies T p if ∃ C > 0: � 2 CH ( Q | P ) . W p ( Q , P ) ≤ ◮ H ( Q | P ) = E Q log ( dQ / dP ) or ∞ .

  15. T RANSPORTATION I NEQUALITIES TCI (Ω , d ) - metric space. P , Q - prob measures. π [ Ed p ( X , X ′ )] 1 / p . W p ( Q , P ) = inf ◮ P satisfies T p if ∃ C > 0: � 2 CH ( Q | P ) . W p ( Q , P ) ≤ ◮ H ( Q | P ) = E Q log ( dQ / dP ) or ∞ . ◮ Related: Bobkov and Götze, Bobkov-Gentil-Ledoux, Dembo, Gozlan-Roberto-Samson, Otto and Villani, Talagrand.

  16. M ARTON ’ S ARGUMENT ◮ T p , p ≥ 1 ⇒ Gaussian concentration of Lipschitz functions. ◮ If f : Ω → R - Lipschitz. | f ( x ) − f ( y ) | ≤ σ d ( x , y ) . ◮ Then f has Gaussian tails: P ( | f − m f | > r ) ≤ 2 e − r 2 / 2 C σ 2 . ◮ Fix p = 2 from now on.

  17. Idea of proof for Problem 1

  18. T HE W IENER MEASURE ◮ Consider Ω = C [ 0 , T ] , d ( ω, ω ′ ) = sup 0 ≤ s ≤ T | ω ( s ) − ω ′ ( s ) | . ◮ (Feyel-Üstünel ’04, P . ’10) P = Wiener measure satisfies T 2 with C = T . ◮ Related: Djellout-Guillin-Wu, Fang-Shao, Fang-Wang-Wu, Wu-Zhang.

  19. P ROOF ◮ Proof: If Q ≪ P , then by Girsanov d ω ( t ) = b ( t , ω ) dt + d β ( t ) . Here β ∼ P . � 1 / 2 ≤ E Q d 2 ( ω, β ) ◮ W 2 ( Q , P ) ≤ � � 2 TH ( Q | P ) .

  20. E XAMPLES ◮ How to show local time at zero has Gaussian tail? ◮ L 0 ( T ) is not Lipschitz w.r.t uniform norm. ◮ Lévy representation: L 0 ( T ) = − inf 0 ≤ s ≤ t β ( s ) ∧ 0 . ◮ Lipschitz function of the entire path. Thus P ( | L 0 ( T ) − m T | > r ) ≤ 2 e − r 2 / 2 T .

  21. BM IN R n ◮ Multidimensional Wiener measure satisfies T 2 . ◮ Uniform metric n d 2 ( ω, ω ′ ) = 1 | ω ( s ) − ω ′ ( s ) | 2 . � sup n 0 ≤ s ≤ T i = 1 ◮ Skorokhod map S : BM in R n �→ RBM in polyhedra . ◮ Deterministic map. Rather abstract and complicated. ◮ But Lipschitz.

  22. T HE L IPSCHITZ CONSTANT T HEOREM (P. - S HKOLNIKOV ’10) The Lipschitz constant of S is ≤ 2 n 5 / 2 . ◮ The slope α ( t ) is a linear map. BM on R n → RBM on wedge → slope of regression . ◮ Evaluate Lipschitz constant. Estimate concentration.

  23. Idea of proof for Problem 2

  24. A DIFFERENT METRIC ◮ For ω, ω ′ ∈ C d [ 0 , ∞ ) : σ r = inf { t ≥ 0 : σ r ( ω, ω ′ ) > r } . ◮ Consider ϕ : R + → R + � ∞ � � ϕ 2 ( s ) ds ≤ 1 ϕ ≥ 0 , ϕ ↓ , Φ 1 := . 0 ◮ (P . ’12) A metric on paths: � 1 / 2 � ∞ � ρ ( ω, ω ′ ) := sup ϕ ( σ r ) dr . 0 ϕ ∈ Φ 1

  25. G ENERALIZED TCI T HEOREM (P. ’12) P - multidimension Wiener measure. � 2 H ( Q | P ) . 4 W 2 ( Q , P ) ≤ With respect to ρ .

  26. A N EXAMPLE ◮ P -Wiener measure. Two event processes: 1 ≤ t ≤ T . √ √ s , 1 ≤ s ≤ T β ( s ) ≥ 2 s , 1 ≤ s ≤ T � � � � A T = β ( s ) ≤ B T = .

  27. A N EXAMPLE ◮ P -Wiener measure. Two event processes: 1 ≤ t ≤ T . √ √ s , 1 ≤ s ≤ T β ( s ) ≥ 2 s , 1 ≤ s ≤ T � � � � A T = β ( s ) ≤ B T = . ◮ Let Q 1 = P ( · | A T ) , Q 2 = P ( · | B T ) .

  28. A N EXAMPLE ◮ P -Wiener measure. Two event processes: 1 ≤ t ≤ T . √ √ s , 1 ≤ s ≤ T β ( s ) ≥ 2 s , 1 ≤ s ≤ T � � � � A T = β ( s ) ≤ B T = . ◮ Let Q 1 = P ( · | A T ) , Q 2 = P ( · | B T ) . ◮ Couple ( X , Y ) ∼ ( Q 1 , Q 2 ) . 1 ≤ s ≤ T . σ √ s ( X , Y ) ≤ s ,

  29. A N EXAMPLE ◮ P -Wiener measure. Two event processes: 1 ≤ t ≤ T . √ √ s , 1 ≤ s ≤ T β ( s ) ≥ 2 s , 1 ≤ s ≤ T � � � � A T = β ( s ) ≤ B T = . ◮ Let Q 1 = P ( · | A T ) , Q 2 = P ( · | B T ) . ◮ Couple ( X , Y ) ∼ ( Q 1 , Q 2 ) . 1 ≤ s ≤ T . σ √ s ( X , Y ) ≤ s , ◮ ϕ ↓ and ≥ 0: � √ � T � T T ϕ ( σ √ s ) ds ϕ ( s ) ds ϕ ( σ r ) dr = 2 √ s ≥ 2 √ s . 1 1 1

  30. A N EXAMPLE ◮ P -Wiener measure. Two event processes: 1 ≤ t ≤ T . √ √ s , 1 ≤ s ≤ T β ( s ) ≥ 2 s , 1 ≤ s ≤ T � � � � A T = β ( s ) ≤ B T = . ◮ Let Q 1 = P ( · | A T ) , Q 2 = P ( · | B T ) . ◮ Couple ( X , Y ) ∼ ( Q 1 , Q 2 ) . 1 ≤ s ≤ T . σ √ s ( X , Y ) ≤ s , ◮ ϕ ↓ and ≥ 0: � √ � T � T T ϕ ( σ √ s ) ds ϕ ( s ) ds ϕ ( σ r ) dr = 2 √ s ≥ 2 √ s . 1 1 1 ◮ Take 2 1 2 √ s 1 { 1 ≤ s ≤ T } . ϕ ( s ) = � log T

  31. E XAMPLE CONTD . ◮ Thus 2 ( Q 1 , Q 2 ) ≥ 1 W 2 � log T . 2

  32. E XAMPLE CONTD . ◮ Thus 2 ( Q 1 , Q 2 ) ≥ 1 W 2 � log T . 2 1 log T ≤ W 2 ( Q 1 , Q 2 ) ≤ W 2 ( Q 1 , P ) + W 2 ( Q 2 , P ) � 4 √ ◮ 2

  33. E XAMPLE CONTD . ◮ Thus 2 ( Q 1 , Q 2 ) ≥ 1 W 2 � log T . 2 1 log T ≤ W 2 ( Q 1 , Q 2 ) ≤ W 2 ( Q 1 , P ) + W 2 ( Q 2 , P ) � 4 √ ◮ 2 � 2 H ( Q 1 | P ) + � 2 H ( Q 2 | P ) 4 4 ≤

  34. E XAMPLE CONTD . ◮ Thus 2 ( Q 1 , Q 2 ) ≥ 1 W 2 � log T . 2 1 log T ≤ W 2 ( Q 1 , Q 2 ) ≤ W 2 ( Q 1 , P ) + W 2 ( Q 2 , P ) � 4 √ ◮ 2 � 2 H ( Q 1 | P ) + � 2 H ( Q 2 | P ) 4 4 ≤ � � 1 1 2 log 2 log P ( B T ) . ≤ 4 P ( A T ) + 4

  35. Idea of proof for problem 3.

  36. T RANSPORTATION -I NFORMATION INEQUALITY ◮ E - Dirichlet form. Fisher Information: √ √ if d ν = fd µ. I ( ν | µ ) := E ( f , f ) , ◮ µ satisfies W 1 I ( c ) inequality if W 2 1 ( ν, µ ) ≤ 4 c 2 I ( ν | µ ) , ∀ ν.

  37. T RANSPORTATION -I NFORMATION INEQUALITY ◮ E - Dirichlet form. Fisher Information: √ √ if d ν = fd µ. I ( ν | µ ) := E ( f , f ) , ◮ µ satisfies W 1 I ( c ) inequality if W 2 1 ( ν, µ ) ≤ 4 c 2 I ( ν | µ ) , ∀ ν. ◮ Allows precise control of additive functionals.

  38. P OINCARÉ INEQUALITIES T HEOREM (G UILLIN ET AL .) Consider W 1 ( ν, µ ) = � ν − µ � TV . ( X t , t ≥ 0 ) Markov - invariant distribution µ . Suppose µ - Poincaré ineq. Then W 1 I holds.

  39. P OINCARÉ INEQUALITIES T HEOREM (G UILLIN ET AL .) Consider W 1 ( ν, µ ) = � ν − µ � TV . ( X t , t ≥ 0 ) Markov - invariant distribution µ . Suppose µ - Poincaré ineq. Then W 1 I holds. Gaps of rank-based processes stationary. Poincaré ineq holds.

  40. Thank you Ioannis. Happy birthday.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend