overview of bode plots transfer function review piece
play

Overview of Bode Plots Transfer function review Piece-wise linear - PowerPoint PPT Presentation

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 1 Transfer


  1. Overview of Bode Plots • Transfer function review • Piece-wise linear approximations • First-order terms • Second-order terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 1

  2. Transfer Function Review H ( s ) x ( t ) y ( t ) Recall that if H ( s ) is known and x ( t ) = A cos( ωt + φ ) , then we can find the steady-state solution for y ( t ) : y ss ( t ) = A | H ( jω ) | cos ( ωt + φ + ∠ H ( jω )) J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 2

  3. Bode Plots H ( s ) x ( t ) y ( t ) • Bode plots are standard method of plotting the magnitude and phase of H ( s ) • Both plots use a logarithmic scale for the x -axis • Frequency is in units of radians/second (rad/s) • The phase is plotted on a linear scale in degrees • Magnitude is plotted on a linear scale in decibels H dB ( jω ) � 20 log 10 | H ( jω ) | J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 3

  4. Decibel Scales It is important to become adept at translating between amplitude, | H ( jω ) | , and decibels, H dB ( jω ) . Amplitude ( | H ( jω ) | ) Decibels ( 20 log 10 | H ( jω ) | ) 1 20 log 10 1 = 10 20 log 10 10 = 100 20 log 10 100 = 1000 20 log 10 1000 = 0.1 20 log 10 0 . 1 = 0.01 20 log 10 0 . 01 = 0.001 20 log 10 0 . 001 = 1 1 20 log 10 = -6.0206 2 2 2 20 log 10 2 = � � 1 1 20 log 10 = 2 2 J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 4

  5. Example 1: Bode Plots 20 nF 10 k Ω 1 k Ω + v s ( t ) v o ( t ) R L - 1. Find the transfer function of the circuit shown above. 2. Generate the bode plot. J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 5

  6. Example 1: Workspace J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 6

  7. Example 1: Bode Plot Active Lowpass RC Filter 20 |H(j ω )| (dB) 10 0 1 2 3 4 5 10 10 10 10 10 180 ∠ H(j ω ) (degrees) 160 140 120 100 1 2 3 4 5 10 10 10 10 10 Frequency (rad/s) J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 7

  8. Example 1: MATLAB Code w = logspace(1,5,500); H = -50e3./(j*w + 5e3); subplot(2,1,1); h = semilogx(w,20*log10(abs(H))); set(h,’LineWidth’,1.4); ylabel(’|H(j\omega)| (dB)’); title(’Active Lowpass RC Filter’); set(gca,’Box’,’Off’); grid on; set(gca,’YLim’,[-5 25]); subplot(2,1,2); h = semilogx(w,angle(H)*180/pi); set(h,’LineWidth’,1.4); ylabel(’\angle H(j\omega) (degrees)’); set(gca,’Box’,’Off’); grid on; set(gca,’YLim’,[85 185]); xlabel(’Frequency (rad/s)’); J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 8

  9. Example 2: Bode Plots 1 µ F 2 µ F 1 k Ω 1 k Ω + v s ( t ) R L - 1. Find the transfer function of the circuit shown above. 2. Generate the bode plot. J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 9

  10. Example 2: Workspace J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 10

  11. Example 2: Bode Plot Active Lead/Lag RC Filter 8 6 |H(j ω )| (dB) 4 2 0 −2 1 2 3 4 5 10 10 10 10 10 −160 ∠ H(j ω ) (degrees) −165 −170 −175 −180 1 2 3 4 5 10 10 10 10 10 Frequency (rad/s) J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 11

  12. Example 2: MATLAB Code w = logspace(1,5,500); H = -2*(j*w+500)./(j*w + 1000); subplot(2,1,1); h = semilogx(w,20*log10(abs(H))); set(h,’LineWidth’,1.4); ylabel(’|H(j\omega)| (dB)’); title(’Active Lead/Lag RC Filter’); set(gca,’Box’,’Off’); grid on; set(gca,’YLim’,[-2 8]); subplot(2,1,2); h = semilogx(w,angle(H)*180/pi); set(h,’LineWidth’,1.4); ylabel(’\angle H(j\omega) (degrees)’); set(gca,’Box’,’Off’); grid on; set(gca,’YLim’,[-180 -160]); xlabel(’Frequency (rad/s)’); J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 12

  13. Bode Plot Approximations • Until recently (late 1980’s) bode plots were drawn by hand • There were many rules-of-thumb, tables, and template plots to help • Today engineers primarily use MATLAB, or the equivalent • Why discuss the old method of plotting by hand? – It is still important to understand how the poles, zeros, and gain influence the Bode plot – These ideas are used for transfer function synthesis, analog circuit design, and control systems • We will discuss simplified methods of generating Bode plots • Based on asymptotic approximations J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 13

  14. Alternate Transfer Function Expressions There are many equivalent expressions for transfer functions. N ( s ) H ( s ) = D ( s ) b m s m + b m − 1 s m − 1 + · · · + b 1 s + b 0 = a n s n + a n − 1 s n − 1 + · · · + a 1 s + a 0 s ± ℓ ( s − z 1 )( s − z 2 ) . . . ( s − z m ) b m = ( s − p 1 )( s − p 2 ) . . . ( s − p n ) a n � � � � � � 1 − s 1 − s s 1 − . . . z 1 z 2 z m k s ± ℓ = � � � � � � 1 − s 1 − s s 1 − . . . p 1 p 2 p n • This last expression is called standard form • The first step in making bode plots is to convert H ( s ) to standard form J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 14

  15. Magnitude Components Consider the expression for the transfer function magnitude: | H dB ( jω ) | = 20 log 10 | H ( jω ) | � � s ± ℓ (1 − s s z 1 ) . . . (1 − z m ) � � = 20 log 10 � k � � (1 − s s p 1 ) . . . (1 − p n ) � � � s = jω 20 log 10 | k | · | jω | ± ℓ | 1 − jω z 1 | . . . | 1 − jω z m | = | 1 − jω p 1 | . . . | 1 − jω p n | = 20 log 10 | k | ± ℓ 20 log 10 ω � � � � � 1 − jω � 1 − jω � � � � +20 log 10 � + · · · + 20 log 10 � � � � z 1 z m � � � � � � 1 − jω � 1 − jω � � � � − 20 log 10 � − · · · − 20 log 10 � � � � p 1 p n � J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 15

  16. Magnitude Components Comments | H dB ( ω ) | = 20 log 10 | k | ± ℓ 20 log 10 ω � � � � � 1 − jω � 1 − jω +20 log 10 � + · · · + 20 log 10 � � � � z 1 z m � � � � � � 1 − jω � 1 − jω − 20 log 10 � − · · · − 20 log 10 � � � � p 1 p n � • Thus, | H dB ( ω ) | can be written as a sum of simple functions • This is similar like using basis functions { δ ( t ) , u ( t ) ,& r ( t ) } to write an expression for a piecewise linear signal • We will use this approach to generate our piecewise linear approximations of the bode plot • Note that there are four types of components in this expression – Constant – Linear term – Zeros – Poles J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 16

  17. Magnitude Components: Constant (dB) | H ( jω ) | 40 20 0 (rad/sec) ω -20 -40 The constant term, 20 log 10 | k | , is a straight line on the Bode plot. J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 17

  18. Magnitude Components: Linear Term (dB) | H ( jω ) | 40 20 0 (rad/sec) ω -20 -40 The linear term, ± ℓ 20 log 10 | ω | , is a line on the magnitude plot with a slope equal to ± ℓ 20 dB per decade. The x -axis intercept occurs at ω = 1 rad/s. Plot the bode magnitude plots for H ( s ) = s , 1 1 s , s 2 , s 2 . J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 18

  19. Magnitude Components: Real Zeros Consider two limiting conditions for a term containing a zero, � 1 − jω � � 20 log 10 � z First condition: ω ≪ | z | � = 0 � 1 − jω � � z → 0 20 log 10 lim z ω � ≈ 0 . � 1 − jω ω � � Thus, if | z | ≪ 1 , then 20 log 10 z Second condition: ω ≫ | z | � = 20 log 10 | − jω � 1 − jω � � z →∞ 20 log 10 lim z | = 20 log 10 | ω | − 20 log 10 | z | z ω ω Thus, if | z | ≫ 1 , then this term is linear (on a log scale) with a slope of 20 dB per decade and an x -axis intercept at ω = | z | . J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 19

  20. Magnitude Components: Real Zeros Continued (dB) | H ( jω ) | 40 20 0 (rad/sec) ω -20 -40 Our piecewise approximation joins these two linear asymptotic approximations at ω = | z | . � 1 − jω � � Plot the piecewise approximation of the term 20 log 10 � . z J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 20

  21. Magnitude Components: Real Zeros Continued 2 Bode Magnitude Real Zero: z = ± 1 rad/s 50 40 30 Mag (dB) 20 10 0 −10 −2 −1 0 1 2 10 10 10 10 10 Frequency (rad/sec) The approximation is least accurate at ω = | z | . The true magnitude is 3 dB higher than the approximation at this corner frequency. J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 21

  22. Magnitude Components: Real Poles (dB) | H ( jω ) | 40 20 0 (rad/sec) ω -20 -40 • Consider two limiting conditions for a term containing a pole, � � � 1 − jω − 20 log 10 � � p � • This is just the negative of the expression for a zero • The piecewise approximation is the mirror image of that for a zero J. McNames Portland State University ECE 222 Bode Plots Ver. 1.19 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend