outline semi implicit multiresolution for multiphase flows
play

Outline Semi-implicit multiresolution for multiphase flows Marie - PowerPoint PPT Presentation

Outline Semi-implicit multiresolution for multiphase flows Marie Postel Laboratoire Jacques-Louis Lions Universit e Pierre et Marie Curie, Paris 6 Work in collaboration with Fr eric Coquel (UPMC-CNRS), ed Quang-Huy Tran (IFP), Nikolay


  1. Outline Semi-implicit multiresolution for multiphase flows Marie Postel Laboratoire Jacques-Louis Lions Universit´ e Pierre et Marie Curie, Paris 6 Work in collaboration with Fr´ eric Coquel (UPMC-CNRS), ed´ Quang-Huy Tran (IFP), Nikolay Andrianov (Schlumberger), Quang-Long Nguyen (IFP) Physical problem 1 Numerical treatment 2 Local time stepping 3 M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 1 / 21

  2. Outline Physical problem 1 Numerical treatment 2 Local time stepping 3 M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 2 / 21

  3. Physical problem: flows in pipeline. ������������� ������������� Transient Simulation ������������� ������������� ������������� ������������� �������� �������� 100 to 300 km �������� �������� ����� ����� 20 to 1000 m ����� ����� ������ ������ ������ ������ 1000 to 5000 m ������ ������ ��� ��� Gas ��� ��� Liquid M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 3 / 21 ��� ��� ��� ��� ��� ���

  4. technological bottleneck: slugging. Slugging video courtesy IFP Solaize (Loading MaestroIFP .avi) M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 4 / 21

  5. technological bottleneck: severe slugging. Gas massic fraction at riser exit Pressure at riser foot 0.9 220000 0.6 200000 Y P 0.3 180000 0 0 200 400 600 800 1000 0 200 400 600 800 1000 t t M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 5 / 21

  6. PDEs system Density gas massic fraction velocity ∂ x ( ρ v )  ∂ t ( ρ ) + = 0  ∂ t ( ρ Y ) ∂ x ( ρ Yv − σ ) + = 0 ∂ t ( ρ v ) ∂ x ( ρ v 2 + P ) S + =  M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 6 / 21

  7. PDEs system Density gas massic fraction velocity ∂ x ( ρ v )  ∂ t ( ρ ) + = 0  ∂ t ( ρ Y ) ∂ x ( ρ Yv − σ ) + = 0 ∂ x ( ρ v 2 + P ) ∂ t ( ρ v ) S + =  drift φ = v g − v ℓ , σ = ρ Y ( 1 − Y ) φ ρ ℓ ρ Y pressure P = p + ρ Y ( 1 − Y ) φ 2 with p ( ρ, ρ Y ) = a 2 g ρ ℓ − ρ ( 1 − Y ) source term S = − ρ g sin θ − C ρ v | v | . conditionally hyperbolic system with eigenvalues : v − c << v << v + c M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 6 / 21

  8. Modeling difficulties. Quantity of interest: gas mass fraction (slow wave CFL ≃ 1) Fast acoustic waves of less interest CFL ≃ 20 → semi-implicit scheme with large time step (Faille,Heintze,’99, Baudin,Coquel,Tran,’05,) Expensive hydrodynamical closure laws → AMR (Cohen,Dyn,Kaber,P .’00 , Cohen,Kaber,Mueller,P .’03 ) Novelty: coupling AMR with large time step methods M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 7 / 21

  9. Modeling difficulties. Quantity of interest: gas mass fraction (slow wave CFL ≃ 1) Fast acoustic waves of less interest CFL ≃ 20 → semi-implicit scheme with large time step (Faille,Heintze,’99, Baudin,Coquel,Tran,’05,) Expensive hydrodynamical closure laws → AMR (Cohen,Dyn,Kaber,P .’00 , Cohen,Kaber,Mueller,P .’03 ) Novelty: coupling AMR with large time step methods M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 7 / 21

  10. Modeling difficulties. Quantity of interest: gas mass fraction (slow wave CFL ≃ 1) Fast acoustic waves of less interest CFL ≃ 20 → semi-implicit scheme with large time step (Faille,Heintze,’99, Baudin,Coquel,Tran,’05,) Expensive hydrodynamical closure laws → AMR (Cohen,Dyn,Kaber,P .’00 , Cohen,Kaber,Mueller,P .’03 ) Novelty: coupling AMR with large time step methods M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 7 / 21

  11. Modeling difficulties. Quantity of interest: gas mass fraction (slow wave CFL ≃ 1) Fast acoustic waves of less interest CFL ≃ 20 → semi-implicit scheme with large time step (Faille,Heintze,’99, Baudin,Coquel,Tran,’05,) Expensive hydrodynamical closure laws → AMR (Cohen,Dyn,Kaber,P .’00 , Cohen,Kaber,Mueller,P .’03 ) Novelty: coupling AMR with large time step methods M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 7 / 21

  12. Outline Physical problem 1 Numerical treatment 2 Local time stepping 3 M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 8 / 21

  13. Numerical treatment The complicated closure laws are treated by relaxation → 5 × 5 system of PDEs. ρ v  ρ     0  ρ Y ρ Yv − Σ 0       ρ v 2 + Π ρ v S       ∂ t + ∂ x =       ρ Π v + a 2 v λρ [ P ( ρ, Y , v ) − Π]       ρ Π       ρ Σ v − b 2 Y λρ [ σ ( ρ, Y , v ) − Σ] ρ Σ with Π and Σ reset at equilibrium P and σ at each time step. Implicitation of the Roe scheme, formulation in increments, with the Roe matrix frozen at time n Semi-implicitation : the terms corresponding to the slow waves are set to zero in the diagonal matrices. M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 9 / 21

  14. Y at time 1. Y at time 3. 0.4 0.4 u 0.3 u 0.3 0.2 0.2 200 400 600 800 200 400 600 800 x x Velocity at time 1. Velocity at time 3. 10 10 5 5 u 0 u 0 -5 -5 -10 -10 200 400 600 800 200 400 600 800 x x ρ at time 1. ρ at time 3. 500 500 initial initial semi semi exp exp u u 400 400 300 300 200 400 600 800 200 400 600 800 x x

  15. Multiresolution adaptive scheme Local grid refinement near the transport wave discontinuities Smoothness analysis of the solution by wavelet decomposition (Harten, ’89, Cohen, ’03) Discretization of the solution on a time-varying nonuniform grid Adaptation of the numerical scheme M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 11 / 21

  16. Example on v-shaped pipe Density Pressure 1000 1e+07 800 600 5e+06 400 200 0 0 2000 4000 0 2000 4000 x x Gas mass fraction Debit gaz 0.007 0.04 0.005 0.003 0.02 0 2000 4000 0 2000 4000 x x M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 12 / 21

  17. Example on v-shaped pipe Density Pressure 1000 1e+07 800 600 5e+06 400 200 0 0 2000 4000 0 2000 4000 x x Gas mass fraction Debit gaz 0.007 0.04 0.005 0.003 0.02 0 2000 4000 0 2000 4000 x x M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 12 / 21

  18. Example on v-shaped pipe Density Pressure 1000 1e+07 800 600 5e+06 400 200 0 0 2000 4000 0 2000 4000 x x Gas mass fraction Debit gaz 0.007 0.04 0.005 0.003 0.02 0 2000 4000 0 2000 4000 x x M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 12 / 21

  19. Example on v-shaped pipe Density Pressure 1000 1e+07 800 600 5e+06 400 200 0 0 2000 4000 0 2000 4000 x x Gas mass fraction Debit gaz 0.007 0.04 0.005 0.003 0.02 0 2000 4000 0 2000 4000 x x M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 12 / 21

  20. Example on v-shaped pipe Density Pressure 1000 1e+07 800 600 5e+06 400 200 0 0 2000 4000 0 2000 4000 x x Gas mass fraction Debit gaz 0.007 0.04 0.005 0.003 0.02 0 2000 4000 0 2000 4000 x x M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 12 / 21

  21. Multiresolution performances Total % error (ref 8192) 0.3 mr1024-4levels mr2048-4levels 0.25 error 1024 unif error 2048 unif 1024/2048 0.2 error 0.15 0.1 0.05 0 0 1 2 3 4 5 6 7 8 9 10 cpu gain M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 13 / 21

  22. Lagrange-Projection Positivity principle Two properties required for the implicit scheme Locally conservative scheme Lagrangian step ∂ t τ − ∂ y v  = 0  dx = vdt + τ dy ∂ t v + ∂ y Π  = 0    ∂ t Π + a 2 ∂ y v with ⇒ = 0 ∂ t Y − ∂ y Σ τ = 1 /ρ = 0    ∂ t Σ − b 2 ∂ y Y  = 0  Euler projection step       ρ ρ 0 ρ Y  + v ∂ x ρ Y  = ∂ t 0     ρ v ρ v 0 M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 14 / 21

  23. Numerical treatment of Lagrange Projection Advantages of the new algorithm Lagrangian step - fast acoustic non linear waves - implicit scheme Explicit CFL condition ensuring positivity Euler projection step - slow transport wave - explicit scheme Flux scheme ensuring local conservation M. Postel (LJLL) Semi-implicit multiresolution for multiphase flows HYP2006 15 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend