orthogonalization with a non standard inner product with
play

ORTHOGONALIZATION WITH A NON-STANDARD INNER PRODUCT WITH THE - PowerPoint PPT Presentation

ORTHOGONALIZATION WITH A NON-STANDARD INNER PRODUCT WITH THE APPLICATION TO PRECONDITIONING Miroslav Rozlo zn k joint work with Ji r Kopal, Alicja Smoktunowicz and Miroslav T uma Institute of Computer Science, Czech Academy


  1. ORTHOGONALIZATION WITH A NON-STANDARD INNER PRODUCT WITH THE APPLICATION TO PRECONDITIONING Miroslav Rozloˇ zn´ ık joint work with Jiˇ r´ ı Kopal, Alicja Smoktunowicz and Miroslav T˚ uma Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic 10th IMACS International Symposium on Iterative Methods in Scientific Computing, Marrakech, Morocco, May 18-21, 2011 Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 1 / 20

  2. Orthogonalization with a non-standard inner product A symmetric positive definite m × m matrix Z ( 0 ) = [ z ( 0 ) 1 , . . . , z ( 0 ) n ] full column rank m × n matrix A -orthogonal basis of span ( Z ( 0 ) ) : Z = [ z 1 , . . . , z n ] - m × n matrix having orthogonal columns with respect to the inner product �· , ·� A U upper triangular n × n matrix Z ( 0 ) = ZU , Z T AZ = I ( Z ( 0 ) ) T AZ ( 0 ) = U T U Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 2 / 20

  3. Condition number of orthogonal and triangular factor Z T AZ = ( A 1 / 2 Z ) T ( A 1 / 2 Z ) = I = ⇒ A 1 / 2 Z is orthogonal with respect to the standard inner product A 1 / 2 Z ( 0 ) = ( A 1 / 2 Z ) U is a standard QR factorization κ ( Z ) ≪ κ 1 / 2 ( A ) κ ( U ) = κ ( A 1 / 2 Z ( 0 ) ) ≤ κ 1 / 2 ( A ) κ ( Z ( 0 ) ) particular case Z ( 0 ) = I : Z = U − 1 upper triangular m × n matrix κ ( U ) = κ ( Z ) Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 3 / 20

  4. Approximation properties of orthogonal factor Z T AZ = I ZZ T = Z ( 0 ) U − 1 U − T ( Z ( 0 ) ) T = Z ( 0 ) [( Z ( 0 ) ) T AZ ( 0 ) ] − 1 ( Z ( 0 ) ) T AZZ T : orthogonal projector onto R ( AZ ( 0 ) ) and orthogonal to R ( Z ( 0 ) ) ZZ T A : orthogonal projector onto R ( Z ( 0 ) ) and orthogonal to R ( AZ ( 0 ) ) important case Z ( 0 ) square and nonsingular: inverse factorization ZZ T = A − 1 Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 4 / 20

  5. Important application: approximate inverse preconditioning Z T ≈ A − 1 ¯ Z gives the approximate inverse ¯ Z ¯ Ax = b Z T A ¯ ¯ Zy = ¯ Z T b , where x = ¯ Zy ¯ U approximates the Cholesky factor of ( Z ( 0 ) ) T AZ ( 0 ) the loss of orthogonality � ¯ Z T A ¯ Z − I � the factorization error � Z ( 0 ) − ¯ Z ¯ U � Cholesky factorization error � ( Z ( 0 ) ) T AZ ( 0 ) − ¯ U T ¯ U � Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 5 / 20

  6. Problem 1a (inverse Hilbert matrix) 0 10 5 10 A A+1e−14||A||*rand(n,n) −2 A+1e−12||A||*rand(n,n) 10 A+1e−10||A||*rand(n,n) A+1e−8||A||*rand(n,n) −4 10 0 10 Loss of orthogonality ||I−Z T AZ|| −6 10 residual norm ||r|| −8 −5 10 10 � = 0 −10 � = 1e−14 10 � = 1e−12 � = 1e−10 � = 1e−8 −10 10 −12 10 u * ||A||||Z|| 2 ||X T X|| 1e−14 * ||A||||Z|| 2 ||X T X|| 1e−12 * ||A||||Z|| 2 ||X T X|| −14 10 1e−10 * ||A||||Z|| 2 ||X T X|| 1e−8 * ||A||||Z|| 2 ||X T X|| −15 10 −16 10 0 2 4 6 8 10 12 14 16 10 10 10 10 10 10 10 10 10 0 2 4 6 8 10 12 14 16 18 20 condition number (A) iteration n Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 6 / 20

  7. Eigenvalue based implementation - EIG 1. spectral decomposition A = V Λ V T 2. QR factorization Λ 1 / 2 V T Z ( 0 ) = QU 3. orthogonal-diagonal-orthogonal matrix multiplication Z = V Λ − 1 / 2 Q backward stable eigendecomposition + backward stable QR: � ¯ Z T A ¯ Z − I � ≤ O ( u ) � A �� ¯ Z � 2 Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 7 / 20

  8. Gram-Schmidt orthogonalization z ( j ) = z ( j − 1 ) − α ji z j i i z i = z ( i − 1 ) α ii = � z i − 1 /α ii , � A i i modified Gram-Schmidt (MGS) algorithm ≡ SAINV algorithm: α ji = � z ( j − 1 ) , z j � A i classical Gram-Schmidt (CGS) algorithm: α ji = � z ( 0 ) , z j � A i AINV algorithm: oblique projections α ji = � z ( j − 1 ) , z ( 0 ) � A /α jj i j Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 8 / 20

  9. Local errors in the (modified) Gram-Schmidt process z ( j ) = z ( j − 1 ) − α ji ¯ z j i i α ji = � z ( j − 1 ) , ¯ z j � A i � z ( j ) A ) � z ( j − 1 ) z j � 2 i , ¯ z j � A = ( 1 − � ¯ , ¯ z j � A i z ( j ) = z ( j − 1 ) − ¯ α ji z j i i α ji = fl [ � z ( j − 1 ) ¯ , z j � A ] i � z ( j ) � fl [ � z ( j − 1 ) , z j � A ] − � z ( j − 1 ) � � z j � 2 i , z j � A = , z j � A A i i Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 9 / 20

  10. Loss of orthogonality in the MGS algorithm: O ( u ) κ ( A ) κ ( A 1 / 2 Z ( 0 ) ) < 1 O ( u ) � A �� ¯ Z � 2 κ ( A 1 / 2 Z ( 0 ) ) � I − ¯ Z T A ¯ Z � ≤ 1 − O ( u ) � A �� ¯ Z � 2 κ ( A 1 / 2 Z ( 0 ) ) Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 10 / 20

  11. Loss of orthogonality in the CGS and AINV algorithms O ( u ) κ ( A ) κ ( A 1 / 2 Z ( 0 ) ) κ ( Z ( 0 ) ) < 1 O ( u ) � A � 1 / 2 � ¯ Z � κ ( A 1 / 2 Z ( 0 ) ) κ 1 / 2 ( A ) κ ( Z ( 0 ) ) � I − ¯ Z T A ¯ Z � ≤ 1 − O ( u ) � A � 1 / 2 � ¯ Z � κ ( A 1 / 2 Z ( 0 ) ) κ 1 / 2 ( A ) κ ( Z ( 0 ) ) Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 11 / 20

  12. Classical Gram-Schmidt (CGS2) with reorthogonalization i − 1 z ( 1 ) = z ( 0 ) α ( 1 ) α ( 1 ) = � z ( 0 ) − P ji z j , , z j � A i i ji i j = 1 i − 1 z ( 2 ) = z ( 1 ) α ( 2 ) α ( 2 ) = � z ( 1 ) − P ji z j , , z j � A i i ji i j = 1 z i = z ( 2 ) α ii = � z ( 2 ) /α ii , � A i i O ( u ) κ 1 / 2 ( A ) κ ( A 1 / 2 Z ( 0 ) ) < 1 � I − ¯ Z T A ¯ Z � ≤ O ( u ) � A �� ¯ Z � 2 Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 12 / 20

  13. Local errors in the inner product and normalization general positive definite A : | fl [ � z ( j − 1 ) , z j � A ] − � z ( j − 1 ) , z j � A | ≤ O ( u ) � A �� z ( j − 1 ) �� z j � i i i | 1 − � z j � 2 A | ≤ O ( u ) � A �� z j � 2 diagonal ( weight matrix ) A : | fl [ � z ( j − 1 ) , z j � A ] − � z ( j − 1 ) , z j � A | ≤ O ( u ) � z ( j − 1 ) � A � z j � A i i i | 1 − � z j � 2 A | ≤ O ( u ) Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 13 / 20

  14. A diagonal similar to orthogonalization with the standard inner product MGS algorithm: O ( u ) κ ( A 1 / 2 Z ( 0 ) ) < 1 O ( u ) κ ( A 1 / 2 Z ( 0 ) ) � I − ¯ Z T A ¯ Z � ≤ 1 − O ( u ) κ ( A 1 / 2 Z ( 0 ) ) CGS and AINV algorithms: O ( u ) κ 2 ( A 1 / 2 Z ( 0 ) ) < 1 O ( u ) κ 2 ( A 1 / 2 Z ( 0 ) ) � I − ¯ Z T A ¯ Z � ≤ 1 − O ( u ) κ 2 ( A 1 / 2 Z ( 0 ) ) CGS with reorthogonalization: O ( u ) κ ( A 1 / 2 Z ( 0 ) ) < 1 � I − ¯ Z T A ¯ Z � ≤ O ( u ) [standard inner product A = I ; MGS: Bj¨ orck 1967, Bj¨ orck and Paige 1992, CGS: Giraud, Langou, R, van den Eshof 2005, Barlow, Langou, Smoktunowicz 2006, CGS2: Giraud, Langou, R, van den Eshof 2005] [weighted least squares problem; MGS: Gulliksson, Wedin 1992, Gulliksson 1995] Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 14 / 20

  15. Numerical experiments - four extremal cases 1. κ 1 / 2 ( A ) ≪ κ ( A 1 / 2 Z ( 0 ) ) 2. κ ( A 1 / 2 Z ( 0 ) ) ≪ κ 1 / 2 ( A ) 3. A positive diagonal 4. Z ( 0 ) = I Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 15 / 20

  16. Problem 9 (Hilbert matrix), κ (A) = 1.2e5 0 10 −2 10 −4 10 Loss of orthogonality ||I−Z T AZ|| −6 10 MGS CGS CGS2 −8 10 AINV EIG u κ (A) u κ (A) κ (A 1/2 Z (0) ) −10 10 u κ (A) κ (A 1/2 Z (0) ) κ (Z (0) ) −12 10 −14 10 −16 10 0 2 4 6 8 10 12 14 16 10 10 10 10 10 10 10 10 10 condition number (A 1/2 Z (0) ) Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 16 / 20

  17. Problem 11 (Hilbert matrix) 0 10 −2 10 −4 10 Loss of orthogonality ||I−Z T AZ|| −6 10 −8 10 −10 10 MGS CGS −12 10 CGS2 AINV EIG −14 u κ (A) 10 u κ (A) κ (A 1/2 Z (0) ) u κ (A) κ (A 1/2 Z (0) ) κ (Z 0 ) −16 10 0 2 4 6 8 10 12 14 16 10 10 10 10 10 10 10 10 10 condition number (A) Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 17 / 20

  18. Problem 3 (diagonal matrix) 0 10 −2 10 −4 10 Loss of orthogonality ||I−Z T AZ|| −6 10 −8 10 MGS CGS −10 10 CGS2 AINV EIG −12 u κ (A 1/2 Z (0) ) 10 u κ 2 (A 1/2 Z (0) ) −14 10 −16 10 0 2 4 6 8 10 12 14 16 10 10 10 10 10 10 10 10 10 condition number (A) Miroslav Rozloˇ zn´ ık (ICS CAS) Orthogonalization with a non-standard inner product 10th IMACS 18 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend