gram schmidt orthogonalization with standard and non
play

GRAM-SCHMIDT ORTHOGONALIZATION WITH STANDARD AND NON-STANDARD INNER - PowerPoint PPT Presentation

GRAM-SCHMIDT ORTHOGONALIZATION WITH STANDARD AND NON-STANDARD INNER PRODUCT: ROUNDING ERROR ANALYSIS Miro Rozlo zn k joint work with Ji r Kopal, Ahmed Salam, Alicja Smoktunowicz and Miroslav T uma Institute of Computer


  1. GRAM-SCHMIDT ORTHOGONALIZATION WITH STANDARD AND NON-STANDARD INNER PRODUCT: ROUNDING ERROR ANALYSIS Miro Rozloˇ zn´ ık joint work with Jiˇ r´ ı Kopal, Ahmed Salam, Alicja Smoktunowicz and Miroslav T˚ uma Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic SIAM Conference on Applied Linear Algebra, Valencia, Spain, June 18-22, 2012 Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  2. STANDARD INNER PRODUCT: GRAM-SCHMIDT PROCESS AS QR ORTHOGONALIZATION A = ( a 1 , . . . , a n ) ∈ R m , n , m ≥ rank ( A ) = n orthogonal basis Q of span ( A ) Q = ( q 1 , . . . , q n ) ∈ R m , n , Q T Q = I A = QR , R upper triangular ( A T A = R T R ) Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  3. CLASSICAL AND MODIFIED GRAM-SCHMIDT ALGORITHMS finite precision arithmetic: Q T ¯ Q T ¯ ¯ q n ) , ¯ Q � = I n , � I − ¯ Q = (¯ q 1 , . . . , ¯ Q � ≤ ? ◮ classical and modified Gram-Schmidt are mathematically equivalent, but they have ”different” numerical properties ◮ classical Gram-Schmidt can be ”quite unstable”, can ”quickly” lose all semblance of orthogonality ◮ Gram-Schmidt with reorthogonalization : ”two-steps are enough” to preserve the orthogonality to working accuracy Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  4. GRAM-SCHMIDT PROCESS VERSUS ROUNDING ERRORS ◮ modified Gram-Schmidt: assuming O ( u ) κ ( A ) < 1 Q T ¯ � I − ¯ O ( u ) κ ( A ) Q � ≤ 1 −O ( u ) κ ( A ) Bj¨ orck, 1967, Bj¨ orck, Paige, 1992 ◮ classical Gram-Schmidt: assuming c 1 u κ ( A ) < 1 Q T ¯ O ( u ) κ 2 ( A ) � I − ¯ Q � ≤ 1 −O ( u ) κ ( A ) Giraud, van den Eshof, Langou, R, 2005 Barlow, Smoktunowicz, Langou, 2006 ◮ classical or modified Gram-Schmidt with reorthogonalization : assuming O ( u ) κ ( A ) < 1 Q T ¯ � I − ¯ Q � ≤ O ( u ) Giraud, van den Eshof, Langou, R, 2005 Barlow, Smoktunowicz, 2011 Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  5. CGS x CHOL QR x MGS x CGS2 0 10 −2 10 −4 10 T Q k || −6 loss of orthgonality || I − Q k 10 −8 10 −10 10 −12 10 −14 10 −16 10 1 2 3 4 5 6 7 8 logarithm of the condition number κ (A k ) Stewart, ”Matrix algorithms” book, p. 284, 1998 Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  6. ORTHOGONALIZATION WITH A NON-STANDARD INNER PRODUCT B ∈ R m , m symmetric positive definite, inner product �· , ·� B A = [ a 1 , . . . , a n ] ∈ R m , n , m ≥ n = rank ( A ) B -orthogonal basis of the range of A : Z = [ z 1 , . . . , z n ] ∈ R m , n , Z T BZ = I A = ZU , U ∈ R n , n upper triangular A T BA = U T U Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  7. NON-STANDARD ORTHOGONALIZATION AND STANDARD QR B 1 / 2 A = ( B 1 / 2 Z ) U , Z T BZ = ( B 1 / 2 Z ) T ( B 1 / 2 Z ) = I κ ( Z ) ≪ κ 1 / 2 ( B ) κ ( U ) = κ ( B 1 / 2 A ) ≤ κ 1 / 2 ( B ) κ ( A ) finite precision arithmetic: ¯ z n ) , ¯ Z T B ¯ Z � = I , � I − ¯ Z T B ¯ Z = (¯ z 1 , . . . , ¯ Z � ≤ ? U T ¯ U T ¯ ¯ U ≈ A T BA , � A T BA − ¯ U � ≤ ? Z ¯ ¯ U ≈ A , � A − ¯ Z ¯ U � ≤ ? Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  8. REFERENCE AND GRAM-SCHMIDT IMPLEMENTATIONS B = V Λ V T , Λ 1 / 2 V T A = QU , Z = V Λ − 1 / 2 Q backward stable eigendecomposition + backward stable QR: � ¯ Z T B ¯ Z − I � ≤ O ( u ) � B �� ¯ Z � 2 z ( 0 ) z ( j ) = z ( j − 1 ) = a i , − α ji z j , j = 1 , . . . , i − 1 i i i z i = z ( i − 1 ) α ii = � z ( i − 1 ) /α ii , � B i i modified Gram-Schmidt ≡ SAINV: α ji = � z ( j − 1 ) , z j � B i classical Gram-Schmidt: α ji = � a i , z j � B AINV algorithm: α ji = � z ( j − 1 ) , a j /α jj � B i Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  9. LOSS OF B -ORTHOGONALITY IN GRAM-SCHMIDT modified Gram-Schmidt: O ( u ) κ ( B ) κ ( B 1 / 2 A ) < 1 O ( u ) � B �� ¯ Z � 2 κ ( B 1 / 2 A ) � I − ¯ Z T B ¯ Z � ≤ 1 − O ( u ) � B �� ¯ Z � 2 κ ( B 1 / 2 A ) classical Gram-Schmidt and AINV algorithm: O ( u ) κ ( B ) κ ( B 1 / 2 A ) κ ( A ) < 1 O ( u ) � B � 1 / 2 � ¯ Z � κ ( B 1 / 2 A ) κ 1 / 2 ( B ) κ ( A ) � I − ¯ Z T B ¯ Z � ≤ 1 − O ( u ) � B � 1 / 2 � ¯ Z � κ ( B 1 / 2 A ) κ 1 / 2 ( B ) κ ( A ) classical Gram-Schmidt with reorthogonalization: O ( u ) κ 1 / 2 ( B ) κ ( B 1 / 2 A ) < 1 � I − ¯ Z T B ¯ Z � ≤ O ( u ) � B �� ¯ Z �� ¯ Z ( 1 ) � Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  10. THE LOCAL ERRORS IN A NON-STANDARD INNER PRODUCTS general positive definite B : z ( j − 1 ) z ( j − 1 ) z ( j − 1 ) | fl [ � ¯ , ¯ z j � B ] − � ¯ , ¯ z j � B | ≤ O ( u ) � B �� ¯ �� ¯ z j � i i i z j � 2 z j � 2 | 1 − � ¯ B | ≤ O ( u ) � B �� ¯ diagonal positive ( weight matrix ) B : z ( j − 1 ) z ( j − 1 ) z ( j − 1 ) | fl [ � ¯ , ¯ z j � B ] − � ¯ , ¯ z j � B | ≤ O ( u ) � ¯ � B � ¯ z j � B i i i z j � 2 | 1 − � ¯ B | ≤ O ( u ) Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  11. DIAGONAL CASE IS SIMILAR TO STANDARD CASE modified Gram-Schmidt: O ( u ) κ ( B 1 / 2 A ) < 1 O ( u ) κ ( B 1 / 2 A ) � I − ¯ Z T B ¯ Z � ≤ 1 − O ( u ) κ ( B 1 / 2 A ) classical Gram-Schmidt and AINV algorithm O ( u ) κ 2 ( B 1 / 2 A ) < 1 O ( u ) κ 2 ( B 1 / 2 A ) � I − ¯ Z T B ¯ Z � ≤ 1 − O ( u ) κ 2 ( B 1 / 2 A ) classical Gram-Schmidt with reorthogonalization: O ( u ) κ ( B 1 / 2 A ) < 1 � I − ¯ Z T B ¯ Z � ≤ O ( u ) Gulliksson, Wedin 1992, Gulliksson 1995 Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  12. NUMERICAL EXPERIMENTS - EXTREMAL CASES 1. κ 1 / 2 ( B ) ≪ κ ( B 1 / 2 A ) 2. κ ( B 1 / 2 A ) ≤ κ 1 / 2 ( B ) 3. B positive diagonal Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  13. Problem 9 (Hilbert matrix), κ (B)=1.2e5 0 10 −2 10 −4 10 Loss of orthogonality ||I−Z T BZ|| −6 10 MGS CGS CGS2 −8 10 AINV EIG u κ (B) u κ (B) κ (B 1/2 A) −10 10 u κ (B) κ (B 1/2 A) κ (A) −12 10 −14 10 −16 10 0 2 4 6 8 10 12 14 16 10 10 10 10 10 10 10 10 10 condition number (B 1/2 A) Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  14. Problem 11 (Hilbert matrix) 0 10 −2 10 −4 10 Loss of orthogonality ||I−Z T BZ|| −6 10 −8 10 −10 10 MGS CGS −12 10 CGS2 AINV EIG −14 u κ (B) 10 u κ (B) κ (B 1/2 A) u κ (B) κ (B 1/2 A) κ (A) −16 10 0 2 4 6 8 10 12 14 16 10 10 10 10 10 10 10 10 10 condition number (B) Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  15. Problem 3 (diagonal matrix) 0 10 −2 10 −4 10 Loss of orthogonality ||I−Z T BZ|| −6 10 −8 10 MGS CGS −10 10 CGS2 AINV EIG −12 u κ (B 1/2 A) 10 u κ 2 (B 1/2 A) −14 10 −16 10 0 2 4 6 8 10 12 14 16 10 10 10 10 10 10 10 10 10 condition number (B) Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  16. ELEMENTARY SR FACTORIZATION � � 0 I m ∈ R 2 m , 2 m skew-symmetric and orthogonal J = − I m 0 A = [ a 1 , a 2 ] ∈ R 2 m , 2 , non-isotropic with a T 1 Ja 2 � = 0 � � 0 − 1 V = [ v 1 , v 2 ] ∈ R 2 m , 2 , symplectic V J V = V T JV = I 2 , v T 1 Jv 2 = 1 1 0 � � r 11 r 12 ∈ R 2 , 2 upper triangular with r 11 r 22 = a T A = VR , R = 1 Ja 2 0 r 22 Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  17. GRAM-SCHMIDT WITH SKEW-SYMMETRIC BILINEAR FORM finite precision arithmetic: V J ¯ ¯ v 2 ) , ¯ v T V = (¯ v 1 , ¯ V � = I , | ¯ 1 J ¯ v 2 − 1 | ≤ ? loss of symplecticity: assuming | a T 1 Ja 2 | > O ( u ) � a 1 �� a 2 � O ( u ) � a 1 �� a 2 � | a T 1 Ja 2 | v T | ¯ 1 J ¯ v 2 − 1 | ≤ 1 − O ( u ) � a 1 �� a 2 � | a T 1 Ja 2 | Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

  18. Thank you for your attention!!! Reference: J. Kopal, R, A. Smoktunowicz, and M. T˚ uma: Rounding error analysis of orthogonalization with a non-standard inner product, to appear in BIT. Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis SIAM Conference on Linear Algebra

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend