rounding error analysis of indefinite orthogonalization
play

ROUNDING ERROR ANALYSIS OF INDEFINITE ORTHOGONALIZATION Miro Rozlo - PowerPoint PPT Presentation

ROUNDING ERROR ANALYSIS OF INDEFINITE ORTHOGONALIZATION Miro Rozlo zn k joint work with Alicja Smoktunowicz and Felicja Okulicka-D lu zewska Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic


  1. ROUNDING ERROR ANALYSIS OF INDEFINITE ORTHOGONALIZATION Miro Rozloˇ zn´ ık joint work with Alicja Smoktunowicz and Felicja Okulicka-D� lu˙ zewska Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic GAMM-Matheon Workshop ”Matrix Computations for Sparse Recovery” Berlin, April 9-11, 2014

  2. Orthogonalization with the standard inner product A = ( a 1 , . . . , a n ) ∈ R m,n , m ≥ n = rank ( A ) orthogonal basis Q of span ( A ) : Q = ( q 1 , . . . , q n ) ∈ R m,n , Q T Q = I n A = QR , R ∈ R n,n upper triangular with positive diagonal C = A T A = R T R

  3. Orthogonalization with a non-standard inner product B ∈ R m,m symmetric positive definite, inner product �· , ·� B A = ( a 1 , . . . , a n ) ∈ R m,n , m ≥ n = rank ( A ) B -orthonormal basis of span ( A ) : Q = ( q 1 , . . . , q n ) ∈ R m,n , Q T BQ = I n A = QR , R ∈ R n,n upper triangular with positive diagonal C = A T BA = R T R

  4. Indefinite orthogonalization with a symmetric bilinear form B ∈ R m,m symmetric indefinite and nonsingular, bilinear form A = ( a 1 , . . . , a n ) ∈ R m,n , m ≥ n = rank ( A ) B -orthonormal basis of span ( A ) : Q = ( q 1 , . . . , q n ) ∈ R m,n , Q T BQ = Ω ∈ diag( ± 1) A = QR , R ∈ R n,n upper triangular with positive diagonal if no principal minor of C vanishes (if C is strongly nonsingular) C = A T BA = R T Ω R

  5. Signed Cholesky factorization of an indefinite matrix � C j − 1 c 1: j − 1 ,j � C j = A T j BA j = = c T c j,j 1: j − 1 ,j R T � � � � � � 0 Ω j − 1 0 R j − 1 r 1: j − 1 ,j j − 1 r T 0 ω j 0 r j,j r j,j 1: j − 1 ,j r 1: j − 1 ,j = Ω − 1 j − 1 R − T j − 1 c 1: j − 1 ,j 1: j − 1 ,j C − 1 r 2 j,j ω j = c j,j − r T 1: j − 1 ,j Ω j − 1 r 1: j − 1 ,j = c j,j − c T j − 1 c 1: j − 1 ,j = s j � R j − 1 R j − 1 C − 1 � � j − 1 c 1: j − 1 ,j � R j − 1 r 1: j − 1 ,j R j = = 0 r j,j � 0 | s j |

  6. Cholesky factorization and singular value decomposition R T j R j = � � R T � � I C − 1 � I 0 j − 1 R j − 1 0 j − 1 c 1: j − 1 ,j � 1: j − 1 ,j C − 1 c T 1 0 ω j s j 0 1 j − 1 � � I C − 1 � I 0 � � � C j − 1 0 j − 1 c 1: j − 1 ,j C j = c T 1: j − 1 ,j C − 1 1 0 s j 0 1 j − 1

  7. The norm of the triangular factor � 0 � 0 R T j R j = ω 1 C j + 2 � i =1 ,...,j − 1; ω i +1 � = ω i 0 C j \ C i � R j � 2 ≤ � C j � + 2 � � C j \ C i � , i =1 ,...,j − 1; ω i +1 � = ω i

  8. The norm of the inverse of the triangular factor � C − 1 ( R T j − 1 R j − 1 ) − 1 � � � �� 0 0 j R j ) − 1 = C − 1 ( R T j − 1 + ω j − j 0 0 0 0 j � 2 ≤ � C − 1 � � R − 1 � C − 1 j � + 2 i � i =1 ,...,j − 1; ω i +1 � = ω i

  9. Condition number of factors R and Q � R � ≤ � C �� R − 1 � � � j ; ω j +1 � = ω j � C − 1 � C − 1 � + 2 � κ ( R ) ≤ � C � j � σ min ( Q ) ≥ σ min ( A ) � Q � ≤ � A �� R − 1 � , � R � κ ( Q ) ≤ κ ( A ) κ ( R )

  10. Example with κ ( R ) ≈ κ 1 / 2 ( B ) √ ε � � � � 1 0 1 √ ε A = , B = 0 1 − ε � 1 − 1 � Q = R − 1 = R = Q − 1 = , 1 0 √ ε � 1 √ ε � 1 � � 0 0 √ ε Ω = , 0 − 1 � B � ≈ 1 + ε and σ min ( B ) = 2 ε � R � ≈ √ 1 + ε , σ min ( R ) ≈ √ ε , κ ( R ) = κ ( Q ) ≈ 1 √ ε

  11. Example with κ ( R ) ≫ κ 1 / 2 ( B ) � � � � 1 0 ε 1 A = , B = 0 1 1 − ε 1 1 √ √ ε − � � Q = R − 1 = R = Q − 1 = ε (1+ ε 2 ) , √ ε 0 √ � √ ε 1+ ε 2 � 1 1 � √ ε � 0 √ Ω = , 1+ ε 2 0 − 1 0 √ ε √ � B � = σ min ( B ) = 1 + ε 2 √ √ ε 2 κ ( R ) = κ ( Q ) ≈ 2 � R � ≈ √ ε , σ min ( R ) ≈ 2 , √ ε

  12. Triangular factor from classical Gram-Schmidt vs. indefinite Cholesky factor Exact arithmetic: � � a j , a i − � i − 1 k =1 r k,i q k r i,j = ω − 1 ( a j , q i ) B = i ω i r i,i B ( a j , a i ) B − � i − 1 k =1 r k,i ω k r k,j = ω i r i,i Finite precision arithmetic: 1: j,k ¯ 1: j − 1 ,k ¯ r T r 1: j,j = c k,j + ∆ r T r 1: j,j + a T ¯ Ω j ¯ Ω j ¯ k B ∆ a j 1: j − 1 ,j ¯ r 2 r T ω j ¯ ¯ j,j = c j,j − ¯ Ω j − 1 ¯ r 1: j − 1 ,j + ∆ c j,j

  13. Classical Gram-Schmidt computes a stable Cholesky factor of C = A T BA Indefinite Cholesky B -QR factorization: assuming O ( u ) κ ( C ) � A � 2 � B � max j, ¯ ω j � C − 1 � < 1 ω j +1 � =¯ j R T ¯ C + ∆ C = ¯ Ω ¯ R , R � 2 + � B �� A � 2 ] � ∆ C � ≤ O ( u )[ � ¯ Classical Gram-Schmidt ( B -CGS) process : A + ∆ A = ¯ Q ¯ R , � ∆ A � ≤ O ( u ) � ¯ Q �� ¯ R � , R T ¯ C + ∆ C = ¯ Ω ¯ R, � ∆ C � ≤ O ( u )[ � ¯ R � 2 + � B �� A �� ¯ Q �� ¯ R � + � B �� A � 2 ]

  14. Indefinite Cholesky QR factorization: factorization error and loss of orthogonality Q = fl( A ¯ ¯ R − 1 ) Q T B ¯ � ¯ Q − ¯ O ( u )[ κ 2 ( ¯ R ) + � ¯ R − 1 � 2 � A � 2 � B � + 2 � B ¯ Q �� ¯ Q � κ ( ¯ Ω � ≤ R )] Classical Gram-Schmidt ( B -CGS) process : Q T B ¯ � ¯ Q − ¯ Ω � ≤ κ 2 ( ¯ R ) + � ¯ R − 1 � 2 � A � 2 � B � + 3 � BA �� ¯ R − 1 �� ¯ Q � κ ( ¯ � � O ( u ) R )

  15. Classical Gram-Schmidt process with reorthogonalization ( B -CGS2) u (1) = a j − Q j − 1 r (1) 1: j − 1 ,j = ( I − Q j − 1 Ω − 1 j − 1 Q T j − 1 B ) a j , j u (2) = u (1) − Q j − 1 r (2) j − 1 B ) 2 a j = u (1) 1: j − 1 ,j = ( I − Q j − 1 Ω − 1 j − 1 Q T j j j � � u (2) ¯ Q j − 1 � 2 � ¯ r 1: j − 1 ,j � ¯ � � � ¯ Ω j − 1 − ¯ j − 1 B ¯ Q T Q T r j,j � j − 1 B j r j,j ¯ ¯ 1 /r j,j = | s j | − 1 / 2 ≤ � C − 1 � 1 / 2 , � r 1: j − 1 ,j � /r j,j ≤ � R j �� C − 1 � 1 / 2 j j

  16. Cholesky QR factorization with iterative refinement and classical Gram-Schmidt with reorthogonalization: loss of orthogonality A T BA = ( R (1) ) T Ω (1) R (1) , Q (1) = A ( R (1) ) − 1 ( Q (1) ) T BQ (1) = ( R (2) ) T Ω (2) R (2) , Q (2) = Q (1) ( R (2) ) − 1 Q = Q (2) , R = R (2) R (1) Q (2) ) T B ¯ Q (2) − ¯ Q (1) � 2 + � B ¯ � � � ( ¯ � B �� ¯ Q (2) �� ¯ Ω (2) � Q (2) � ≤ O ( u ) CGS with reorthogonalization ( B -CGS2): j � ) 2 < 1 ω j � C − 1 O ( u ) κ ( A ) � A � 2 � B �� C � ( � C − 1 � + max j, ¯ ω j +1 � =¯ � ¯ Q T B ¯ Q − ¯ Ω � ≤ O ( u ) � B �� ¯ Q � 2

  17. Numerical experiments - model examples R T � � � � � � � � C 11 C 12 0 I 0 R 11 R 12 11 C = = , R T R T C 21 C 22 0 − I 0 R 22 12 22 1. κ ( C 11 ) = 100 ≪ κ ( C ) ≈ 10 2 i , κ ( C 12 ) = 10 i for i = 0 , . . . , 8 ; C 22 = 0 ( � C 11 � = � C 12 � = 1 ) 2. κ ( C 11 ) = 10 i ≫ κ ( C ) = 1 for i = 0 , . . . , 16 ; C 2 11 + C 2 12 = I C 22 = − C 11 ( � C 11 � = 1 / 2 )

  18. The spectral properties of computed factors with respect to the conditioning of the submatrix C 12 for Problem 1. � ¯ R � = � ¯ � ¯ R − 1 � = � ¯ � C − 1 � C − 1 � Q − 1 � 12 � � S 22 � Q � 10 0 1.6180e+00 1.0000e+02 1.4142e+01 1.4142e+01 10 1 1.0099e+02 1.0000e+02 1.4142e+01 1.4142e+01 10 2 1.0001e+04 1.0000e+02 1.4142e+01 1.0001e+02 10 3 1.0000e+06 1.0000e+02 1.4142e+01 1.0000e+03 10 4 1.0000e+08 1.0000e+02 1.4142e+01 1.0000e+04 10 5 1.0000e+10 1.0000e+02 1.4142e+01 1.0000e+05 10 6 1.0000e+12 1.0000e+02 1.4142e+01 1.0000e+06 10 7 9.9808e+13 1.0000e+02 1.4142e+01 1.0000e+07 10 8 1.8925e+16 1.0000e+02 1.4142e+01 1.0000e+08

  19. The factorization error � A − ¯ Q ¯ R � with respect to the conditioning of the submatrix C 12 for Problem 1. � C − 1 12 � Cholesky B -QR Cholesky B -QR2 B -CGS B -CGS2 10 0 9.0448e-16 4.0019e-14 3.5544e-15 1.1411e-14 10 1 3.7826e-15 1.7094e-14 2.5165e-15 9.4835e-15 10 2 2.0509e-15 1.4189e-14 2.9717e-16 1.1512e-14 10 3 1.5382e-15 1.3225e-14 4.4431e-16 5.9412e-15 10 4 7.9169e-16 1.4906e-14 2.4825e-16 1.3652e-14 10 5 1.2152e-15 1.5119e-14 2.6803e-16 7.8625e-15 10 6 1.1653e-15 8.8771e-15 4.5776e-16 9.0056e-15 10 7 1.7904e-15 2.2160e-14 1.2413e-16 6.5767e-15 10 8 1.8611e-15 2.5766e-14 1.0175e-15 1.1846e-14

  20. Q T B ¯ The loss of B -orthogonality � ¯ Ω − ¯ Q � with respect to the conditioning of the submatrix C 12 for Problem 1. � C − 1 12 � Cholesky B -QR Cholesky B -QR2 B -CGS B -CGS2 10 0 6.9767e-15 3.1373e-15 4.5838e-15 3.1956e-15 10 1 8.5940e-14 6.6516e-15 5.1740e-14 7.1550e-15 10 2 1.8989e-12 5.6400e-14 4.4021e-12 5.1951e-14 10 3 4.8268e-10 3.2421e-13 1.5760e-10 4.4188e-13 10 4 2.9594e-08 4.9631e-12 1.1656e-08 2.6936e-12 10 5 1.5621e-06 3.7820e-11 1.8274e-06 2.9007e-11 10 6 2.4082e-05 2.0335e-10 2.3673e-04 2.8010e-10 10 7 3.7036e-02 2.5207e-09 9.6352e-03 2.9913e-09 10 8 6.5241e-01 2.0603e-08 4.1306e-01 2.4907e-08

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend