gram schmidt process with a non standard inner product
play

Gram-Schmidt process with a non-standard inner product and its - PowerPoint PPT Presentation

Gram-Schmidt process with a non-standard inner product and its application to the approximate inverse preconditioning Miro Rozlo zn k joint work with Ji r Kopal, Alicja Smoktunowicz and Miroslav T uma Institute of Computer


  1. Gram-Schmidt process with a non-standard inner product and its application to the approximate inverse preconditioning Miro Rozloˇ zn´ ık joint work with Jiˇ r´ ı Kopal, Alicja Smoktunowicz and Miroslav T˚ uma Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic Workshop on Structured Preconditioning and Iterative Methods with Applications, Tsinghua Sanya International Mathematics Forum, Sanya, March 24-28, 2014 Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 1 / 26

  2. STANDARD INNER PRODUCT: GRAM-SCHMIDT PROCESS AS QR ORTHOGONALIZATION A = ( a 1 , . . . , a n ) ∈ R m , n , m ≥ rank ( A ) = n orthogonal basis Q of span ( A ) Q = ( q 1 , . . . , q n ) ∈ R m , n , Q T Q = I A = QR , R upper triangular A T A = R T R Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 2 / 26

  3. CLASSICAL AND MODIFIED GRAM-SCHMIDT ALGORITHMS finite precision arithmetic: Q T ¯ Q T ¯ ¯ q n ) , ¯ Q � = I n , � I − ¯ Q = (¯ q 1 , . . . , ¯ Q � ≤ ? ◮ classical and modified Gram-Schmidt are mathematically equivalent, but they have ”different” numerical properties ◮ classical Gram-Schmidt can be ”quite unstable”, can ”quickly” lose all semblance of orthogonality ◮ Gram-Schmidt with reorthogonalization : ”two-steps are enough” to preserve the orthogonality to working accuracy Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 3 / 26

  4. GRAM-SCHMIDT PROCESS VERSUS ROUNDING ERRORS ◮ modified Gram-Schmidt: assuming O ( u ) κ ( A ) < 1 Q T ¯ � I − ¯ O ( u ) κ ( A ) Q � ≤ 1 −O ( u ) κ ( A ) Bj¨ orck, 1967, Bj¨ orck, Paige, 1992 ◮ classical Gram-Schmidt: assuming O ( u ) κ ( A ) < 1 Q T ¯ O ( u ) κ 2 ( A ) � I − ¯ Q � ≤ 1 −O ( u ) κ ( A ) Giraud, van den Eshof, Langou, R, 2005 Barlow, Smoktunowicz, Langou, 2006 ◮ classical or modified Gram-Schmidt with reorthogonalization : assuming O ( u ) κ ( A ) < 1 Q T ¯ � I − ¯ Q � ≤ O ( u ) Giraud, van den Eshof, Langou, R, 2005 Barlow, Smoktunowicz, 2011 Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 4 / 26

  5. CGS x CHOL QR x MGS x CGS2 0 10 −2 10 −4 10 T Q k || −6 loss of orthgonality || I − Q k 10 −8 10 −10 10 −12 10 −14 10 −16 10 1 2 3 4 5 6 7 8 logarithm of the condition number κ (A k ) Stewart, ”Matrix algorithms” book, p. 284, 1998 Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 5 / 26

  6. ON THE WAY FROM THE STANDARD TO THE NONSTANDARD INNER PRODUCT ◮ Axel Ruhe. Numerical aspects of. Gram-Schmidt orthogonalization. of vectors. Lin. Alg. and its Appl.,. 52/53 (591-601), 1983. ◮ T. Ericsson, An analysis of orthogonalization in elliptic norms, to appear. ◮ M. Gulliksson: Backward error analysis for the constrained and weighted linear least squares problem when using the weighted QR factorization. SIAM J. Matrix Anal. Appl. 16(2), 675-687 (1995) M. Gulliksson: On the modified GramSchmidt algorithm for weighted and constrained linear least squares problems. BIT Numer. Math. 35(4), 453-468 (1995) ◮ S.J. Thomas, R.V.M. Zahar: Efficient orthogonalization in the M-norm. Congr. Numer. 80, 23-32 (1991) 36. S.J. Thomas, R.V.M. Zahar, : An analysis of orthogonalization in elliptic norms. Congr. Numer. 86, 193-222 (1992) Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 6 / 26

  7. ORTHOGONALIZATION WITH A NON-STANDARD INNER PRODUCT B ∈ R m , m symmetric positive definite, inner product �· , ·� B A = [ a 1 , . . . , a n ] ∈ R m , n , m ≥ n = rank ( A ) B -orthogonal basis of the range of A : Z = [ z 1 , . . . , z n ] ∈ R m , n , Z T BZ = I A = ZU , U ∈ R n , n upper triangular A T BA = U T U Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 7 / 26

  8. NON-STANDARD ORTHOGONALIZATION AND STANDARD QR B 1 / 2 A = ( B 1 / 2 Z ) U , Z T BZ = ( B 1 / 2 Z ) T ( B 1 / 2 Z ) = I κ ( Z ) ≪ κ 1 / 2 ( B ) κ ( U ) = κ ( B 1 / 2 A ) ≤ κ 1 / 2 ( B ) κ ( A ) U − 1 � � ∈ R m , n upper triangular A = I : Z = 0 κ ( U ) = κ ( Z ) = κ 1 / 2 ( A ) Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 8 / 26

  9. Inverse factorization and approximate inverse preconditioning ZZ T = AU − 1 U − T A T = A [ A T BA ] − 1 A T BZZ T : orthogonal projector onto R ( BA ) and orthogonal to R ( A ) ZZ T B : orthogonal projector onto R ( A ) and orthogonal to R ( BA ) A = I square and nonsingular: inverse factorization ZZ T = B − 1 Z T ≈ B − 1 Bx = b , approximate inverse ¯ Z ¯ ↓ Z T B ¯ ¯ Zy = ¯ Z T b , x = ¯ Zy , � ¯ Z T B ¯ Z − I � ≤ ? finite precision arithmetic: ¯ z n ) , ¯ Z T B ¯ Z � = I , � I − ¯ Z T B ¯ Z = (¯ z 1 , . . . , ¯ Z � ≤ ? U T ¯ U T ¯ ¯ U ≈ A T BA , � A T BA − ¯ U � ≤ ? Z ¯ ¯ U ≈ A , � A − ¯ Z ¯ U � ≤ ? Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 9 / 26

  10. REFERENCE AND GRAM-SCHMIDT IMPLEMENTATIONS B = V Λ V T , Λ 1 / 2 V T A = QU , Z = V Λ − 1 / 2 Q backward stable eigendecomposition + backward stable QR: � ¯ Z T B ¯ Z − I � ≤ O ( u ) � B �� ¯ Z � 2 z ( 0 ) z ( j ) = z ( j − 1 ) = a i , − u ji z j , j = 1 , . . . , i − 1 i i i z i = z ( i − 1 ) u ii = � z ( i − 1 ) / u ii , � B i i modified Gram-Schmidt ≡ SAINV: u ji = � z ( j − 1 ) , z j � B i classical Gram-Schmidt: u ji = � a i , z j � B AINV algorithm: u ji = � z ( j − 1 ) , a j / u jj � B i Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 10 / 26

  11. CLASSICAL AND MODIFIED GRAM-SCHMIDT ALGORITHMS classical (CGS) modified (MGS) AINV algorithm for i = 1 , . . . , n for i = 1 , . . . , n for i = 1 , . . . , n z ( 0 ) z ( 0 ) z ( 0 ) = a i = a i = a i i i i for j = 1 , . . . , i − 1 for j = 1 , . . . , i − 1 for j = 1 , . . . , i − 1 z ( j ) = z ( j − 1 ) z ( j ) = z ( j − 1 ) − � z ( j − 1 ) z ( j ) = z ( j − 1 ) − � z ( j − 1 ) a j − � a i , z j � B z j , z j � B z j , � B � B i i i i i i i i � z ( j − 1 ) j end end end z i = z ( i − 1 ) / � z ( i − 1 ) z i = z ( i − 1 ) / � z ( i − 1 ) z i = z ( i − 1 ) / � z ( i − 1 ) � B � B � B i i i i i i end end end Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 11 / 26

  12. GRAM-SCHMIDT ALGORITHMS WITH COMPLETE REORTHOGONALIZATION classical (CGS2) modified (MGS2) for i = 1 , . . . , n for i = 1 , . . . , n z ( 0 ) z ( 0 ) = a i = a i i i for k = 1 , 2 for k = 1 , 2 for j = 1 , . . . , i − 1 for j = 1 , . . . , i − 1 z ( j ) = z ( j − 1 ) z ( j ) = z ( j − 1 ) − � z ( j − 1 ) − � a i , z j � B z j , z j � B z j i i i i i end end end end z i = z ( i − 1 ) / � z ( i − 1 ) z i = z ( i − 1 ) / � z ( i − 1 ) � B � B i i i i end end Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 12 / 26

  13. CLASSICAL GRAM-SCHMIDT PROVIDES A CHOLESKY FACTOR Exact arithmetic: a i , a j − � j − 1 � � k = 1 u k , j z k � � u j , i = a i , z j = B u j , j B � a i , a j � B − � j − 1 k = 1 u k , i u k , j = u j , j A T BA = U T U � A − ¯ Z ¯ U � ≤ O ( u ) � ¯ Z �� ¯ U � � ¯ U − ¯ Z T BA � ≤ O ( u ) � A �� B �� ¯ Z � U T ¯ Z T BA ) T ¯ A T BA = ¯ U − (¯ U − ¯ U + A T B ( A − ¯ Z ¯ U ) Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 13 / 26

  14. CLASSICAL GRAM-SCHMIDT PROCESS: THE LOSS OF B -ORTHOGONALITY THE LOSS OF ORTHOGONALITY U T ¯ Z T BA ) T ¯ A T BA = ¯ U − (¯ U − ¯ U + A T B ( A − ¯ Z ¯ U ) U T ¯ U T ¯ A T BA = ¯ Z T B ¯ Z ¯ U + ( A − ¯ Z ¯ U ) T B ¯ Z ¯ U + ¯ Z T B ( A − ¯ Z ¯ U ) + ( A − ¯ Z ¯ U ) T B ( A − ¯ Z ¯ U ) Z T BA ) T ¯ U T ( I − ¯ ¯ Z T B ¯ Z )¯ U = (¯ U − ¯ U − ( A − ¯ Z ¯ U ) T B ¯ Z ¯ U assuming O ( u ) κ ( B ) κ ( B 1 / 2 A ) κ ( A ) < 1 O ( u ) � B � 1 / 2 � ¯ Z � κ ( B 1 / 2 A ) κ 1 / 2 ( B ) κ ( A ) � I − ¯ Z T B ¯ Z � ≤ 1 −O ( u ) � B � 1 / 2 � ¯ Z � κ ( B 1 / 2 A ) κ 1 / 2 ( B ) κ ( A ) Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 14 / 26

  15. GRAM-SCHMIDT PROCESS WITH REORTHOGONALIZATION ( B -CGS2) z ( 1 ) = a j − Z j − 1 u ( 1 ) 1 : j − 1 , j = ( I − Z j − 1 Z T j − 1 B ) a j , j z ( 2 ) = z ( 1 ) − Z j − 1 u ( 2 ) j − 1 B ) 2 a j = z ( 1 ) 1 : j − 1 , j = ( I − Z j − 1 Z T j j j � � z ( 2 ) ¯ ¯ u 1 : j − 1 , j � ¯ � � � I − ¯ j − 1 B ¯ Z T Z T Z j − 1 � 2 � j u j , j � j − 1 B ¯ ¯ u j , j 1 / u j , j ≤ σ − 1 min ( U ) = σ − 1 min ( B 1 / 2 A ) , � u 1 : j − 1 , j � / u j , j ≤ κ ( B 1 / 2 A ) , finite precision arithmetic: O ( u ) κ 1 / 2 ( B ) κ ( B 1 / 2 A ) < 1 � I − ¯ Z T B ¯ Z � ≤ O ( u ) � B �� ¯ Z �� ¯ Z ( 1 ) � Miro Rozloˇ zn´ ık (Prague) Gram-Schmidt orthogonalization: rounding error analysis TSIMF, Sanya, 2014 15 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend