automated precision tuning using semidefinite programming
play

Automated Precision Tuning using Semidefinite Programming Victor - PowerPoint PPT Presentation

Automated Precision Tuning using Semidefinite Programming Victor Magron , RA Imperial College joint work with G. Constantinides and A. Donaldson British-French-German Conference on Optimization 15 June 2015 Victor Magron Automated Precision


  1. Automated Precision Tuning using Semidefinite Programming Victor Magron , RA Imperial College joint work with G. Constantinides and A. Donaldson British-French-German Conference on Optimization 15 June 2015 Victor Magron Automated Precision Tuning using Semidefinite Programming 1 / 27

  2. Errors and Proofs Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why? Victor Magron Automated Precision Tuning using Semidefinite Programming 2 / 27

  3. Errors and Proofs Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why? M. Lecat, Erreurs des Mathématiciens des origines à nos jours, 1935. ❀ 130 pages of errors! (Euler, Fermat, Sylvester, . . . ) Victor Magron Automated Precision Tuning using Semidefinite Programming 2 / 27

  4. Errors and Proofs Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why? M. Lecat, Erreurs des Mathématiciens des origines à nos jours, 1935. ❀ 130 pages of errors! (Euler, Fermat, Sylvester, . . . ) Ariane 5 launch failure, Pentium FDIV bug Victor Magron Automated Precision Tuning using Semidefinite Programming 2 / 27

  5. Errors and Proofs G UARANTEED O PTIMIZATION Input : Linear problem (LP), geometric, semidefinite (SDP) Output : solution + certificate numeric-symbolic ❀ formal Victor Magron Automated Precision Tuning using Semidefinite Programming 3 / 27

  6. Errors and Proofs G UARANTEED O PTIMIZATION Input : Linear problem (LP), geometric, semidefinite (SDP) Output : solution + certificate numeric-symbolic ❀ formal V ERIFICATION OF CRITICAL SYSTEMS Reliable software/hardware embedded codes Aerospace control molecular biology, robotics, code synthesis, . . . Victor Magron Automated Precision Tuning using Semidefinite Programming 3 / 27

  7. Errors and Proofs G UARANTEED O PTIMIZATION Input : Linear problem (LP), geometric, semidefinite (SDP) Output : solution + certificate numeric-symbolic ❀ formal V ERIFICATION OF CRITICAL SYSTEMS Reliable software/hardware embedded codes Aerospace control molecular biology, robotics, code synthesis, . . . Efficient Verification of Nonlinear Systems Automated precision tuning of systems/programs analysis/synthesis Efficiency sparsity correlation patterns Certified approximation algorithms Victor Magron Automated Precision Tuning using Semidefinite Programming 3 / 27

  8. Rounding Error Bounds Real : p ( x ) : = x 1 × x 2 + x 3 p ( x , e ) : = [ x 1 x 2 ( 1 + e 1 ) + x 3 ]( 1 + e 2 ) Floating-point : ˆ Input variable uncertainties x ∈ S Finite precision ❀ bounds over e | e i | � 2 − m m = 24 (single) or 53 (double) Guarantees on absolute round-off error | ˆ p − p | ? Victor Magron Automated Precision Tuning using Semidefinite Programming 4 / 27

  9. Nonlinear Programs Polynomials programs : + , − , × x 2 x 5 + x 3 x 6 + x 1 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 ) Victor Magron Automated Precision Tuning using Semidefinite Programming 5 / 27

  10. Nonlinear Programs Polynomials programs : + , − , × x 2 x 5 + x 3 x 6 + x 1 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 ) Semialgebraic programs: | · | , √ , /, sup, inf 4 x x 1 + 1.11 Victor Magron Automated Precision Tuning using Semidefinite Programming 5 / 27

  11. Nonlinear Programs Polynomials programs : + , − , × x 2 x 5 + x 3 x 6 + x 1 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 ) Semialgebraic programs: | · | , √ , /, sup, inf 4 x x 1 + 1.11 Transcendental programs: arctan, exp, log, . . . log ( 1 + exp ( x )) Victor Magron Automated Precision Tuning using Semidefinite Programming 5 / 27

  12. Existing Frameworks Classical methods : Abstract domains [Goubault-Putot 11] F LUCTUAT : intervals, octagons, zonotopes Interval arithmetic [Daumas-Melquiond 10] G APPA : interface with C OQ proof assistant Victor Magron Automated Precision Tuning using Semidefinite Programming 6 / 27

  13. Existing Frameworks Recent progress : Affine arithmetic + SMT [Darulova 14] rosa : sound compiler for reals (in S CALA ) Symbolic Taylor expansions [Solovyev 15] FPTaylor : certified optimization (in OC AML and H OL - LIGHT ) Victor Magron Automated Precision Tuning using Semidefinite Programming 6 / 27

  14. Contributions Maximal Rounding error of the program implementation of f : r ⋆ : = max | ˆ f ( x , e ) − f ( x ) | Decomposition: linear term l w.r.t. e + nonlinear term h r ⋆ � max | l ( x , e ) | + max | h ( x , e ) | Sparse SDP bounds for l Coarse bound of h with interval arithmetic Victor Magron Automated Precision Tuning using Semidefinite Programming 7 / 27

  15. Contributions 1 Comparison with SMT and linear/affine arithmetic: ❀ More Efficient optimization + � Tighter upper bounds 2 Extensions to transcendental/conditional programs 3 Formal verification of SDP bounds 4 Open source tool Real2Float (in OC AML and C OQ ) Victor Magron Automated Precision Tuning using Semidefinite Programming 7 / 27

  16. Introduction Semidefinite Programming for Polynomial Optimization Rounding Error Bounds with Sparse SDP Conclusion

  17. What is Semidefinite Programming? Linear Programming (LP): ⊤ z min c z s.t. A z � d . Linear cost c Polyhedron Linear inequalities “ ∑ i A ij z j � d i ” Victor Magron Automated Precision Tuning using Semidefinite Programming 8 / 27

  18. What is Semidefinite Programming? Semidefinite Programming (SDP): ⊤ z min c z ∑ s.t. F i z i � F 0 . i Linear cost c Symmetric matrices F 0 , F i Spectrahedron Linear matrix inequalities “ F � 0” ( F has nonnegative eigenvalues) Victor Magron Automated Precision Tuning using Semidefinite Programming 9 / 27

  19. What is Semidefinite Programming? Semidefinite Programming (SDP): ⊤ z min c z ∑ A z = d . s.t. F i z i � F 0 , i Linear cost c Symmetric matrices F 0 , F i Spectrahedron Linear matrix inequalities “ F � 0” ( F has nonnegative eigenvalues) Victor Magron Automated Precision Tuning using Semidefinite Programming 10 / 27

  20. Applications of SDP Combinatorial optimization Control theory Matrix completion Unique Games Conjecture (Khot ’02) : “A single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems.” (Barak and Steurer survey at ICM’14) Solving polynomial optimization (Lasserre ’01) Victor Magron Automated Precision Tuning using Semidefinite Programming 11 / 27

  21. SDP for Polynomial Optimization Prove polynomial inequalities with SDP: p ( a , b ) : = a 2 − 2 ab + b 2 � 0 . � � � � � � z 1 z 2 a Find z s.t. p ( a , b ) = a b . z 2 z 3 b � �� � � 0 Find z s.t. a 2 − 2 ab + b 2 = z 1 a 2 + 2 z 2 ab + z 3 b 2 ( A z = d ) � z 1 � � 1 � � 0 � � 0 � � 0 � z 2 0 1 0 0 = z 1 + z 2 + z 3 � z 2 z 3 0 0 1 0 0 1 0 0 � �� � � �� � � �� � � �� � F 1 F 2 F 3 F 0 Victor Magron Automated Precision Tuning using Semidefinite Programming 12 / 27

  22. SDP for Polynomial Optimization Choose a cost c e.g. ( 1, 0, 1 ) and solve: ⊤ z min c z ∑ s.t. F i z i � F 0 , A z = d . i � 1 � z 1 � � z 2 − 1 Solution = � 0 (eigenvalues 0 and 1) − 1 z 2 z 3 1 � � 1 � � a � − 1 a 2 − 2 ab + b 2 = � = ( a − b ) 2 . a b − 1 1 b � �� � � 0 Solving SDP = ⇒ Finding S UMS OF S QUARES certificates Victor Magron Automated Precision Tuning using Semidefinite Programming 13 / 27

  23. SDP for Polynomial Optimization General case : Semialgebraic set S : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } p ∗ : = min x ∈ S p ( x ) : NP hard Sums of squares (SOS) Σ [ x ] (e.g. ( x 1 − x 2 ) 2 ) � � σ 0 ( x ) + ∑ m Q ( S ) : = j = 1 σ j ( x ) g j ( x ) , with σ j ∈ Σ [ x ] Fix the degree 2 k of sums of squares Q k ( S ) : = Q ( S ) ∩ R 2 k [ x ] Victor Magron Automated Precision Tuning using Semidefinite Programming 14 / 27

  24. SDP for Polynomial Optimization Hierarchy of SDP relaxations : � � λ k : = sup λ : p − λ ∈ Q k ( S ) λ Convergence guarantees λ k ↑ p ∗ [Lasserre 01] Can be computed with SDP solvers ( CSDP , SDPA ) “No Free Lunch” Rule : ( n + 2 k n ) SDP variables � Extension to semialgebraic functions r ( x ) = p ( x ) / q ( x ) [Lasserre-Putinar 10] Victor Magron Automated Precision Tuning using Semidefinite Programming 15 / 27

  25. Sparse SDP Optimization [Waki, Lasserre 06] Correlative sparsity pattern (csp) of variables x 2 x 5 + x 3 x 6 − x 2 x 3 − x 5 x 6 + x 1 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 ) 6 5 4 1 2 3 C 1 : = { 1, 4 } 1 Maximal cliques C 1 , . . . , C l C 2 : = { 1, 2, 3, 5 } 2 Average size κ ❀ ( κ + 2 k C 3 : = { 1, 3, 5, 6 } κ ) Dense SDP: 210 variables variables Sparse SDP: 115 variables Victor Magron Automated Precision Tuning using Semidefinite Programming 16 / 27

  26. Introduction Semidefinite Programming for Polynomial Optimization Rounding Error Bounds with Sparse SDP Conclusion

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend