optimization of time delays in a parabolic delay equation
play

Optimization of Time Delays in a Parabolic Delay Equation Fredi - PowerPoint PPT Presentation

Optimization of Time Delays in a Parabolic Delay Equation Fredi Trltzsch Technische Universitt Berlin New trends in PDE constrained optimization Linz, October 2019 Fredi Trltzsch (TU Berlin) Time delays 18.10.2019 1 / 41 Joint work


  1. Optimization of Time Delays in a Parabolic Delay Equation Fredi Tröltzsch Technische Universität Berlin New trends in PDE constrained optimization Linz, October 2019 Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 1 / 41

  2. Joint work with Eduardo Casas (Santander, Spain) Martin Gugat (Erlangen, Germany) Mariano Mateos (Gijón, Spain) Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 2 / 41

  3. Outline Introduction 1 Control-to-state mapping 2 Optimization problem 3 Numerical Discretization 4 Numerical examples 5 Nonlocal Pyragas type feedback 6 The problem of stability 7 Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 3 / 41

  4. A linear ODE with time delay y ′ ( t ) = κ y ( t − 1 ) , t > 0 y ( t ) = y 0 ( t ) , − 1 ≤ t ≤ 0 . T. Erneux, Applied delay differential equations, Springer, 2009 κ = − 1 . 8 , y 0 ( 0 ) = 1 , y 0 ( t ) = 0 , t < 0 κ = − 1 . 1 κ = − π/ 2 Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 4 / 41

  5. Nonlinear ODE with delay We consider nonlinear equations with cubic nonlinearity, e.g. y ′ ( t ) + y 3 ( t ) = κ y ( t − τ ) , t > 0 y ( t ) = y 0 ( t ) , − 1 ≤ t ≤ 0 . Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 5 / 41

  6. Nonlinear ODE with delay We consider nonlinear equations with cubic nonlinearity, e.g. y ′ ( t ) + y 3 ( t ) = κ y ( t − τ ) , t > 0 y ( t ) = y 0 ( t ) , − 1 ≤ t ≤ 0 . Find κ and τ generating a desired solution, say one with a desired oscillation. Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 5 / 41

  7. Nonlinear ODE with delay We consider nonlinear equations with cubic nonlinearity, e.g. y ′ ( t ) + y 3 ( t ) = κ y ( t − τ ) , t > 0 y ( t ) = y 0 ( t ) , − 1 ≤ t ≤ 0 . Find κ and τ generating a desired solution, say one with a desired oscillation. We will control the weight κ and the time delay τ as real numbers. Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 5 / 41

  8. Nonlinear ODE with delay We consider nonlinear equations with cubic nonlinearity, e.g. y ′ ( t ) + y 3 ( t ) = κ y ( t − τ ) , t > 0 y ( t ) = y 0 ( t ) , − 1 ≤ t ≤ 0 . Find κ and τ generating a desired solution, say one with a desired oscillation. We will control the weight κ and the time delay τ as real numbers. Instead of R ( y ) = y 3 , consider more general reaction terms like R ( y ) = ( y − y 1 )( y − y 2 )( y − y 3 ) and y ′ ( t ) + R ( y ( t )) = κ y ( t − τ ) . Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 5 / 41

  9. Nonlinear ODE with delay We consider nonlinear equations with cubic nonlinearity, e.g. y ′ ( t ) + y 3 ( t ) = κ y ( t − τ ) , t > 0 y ( t ) = y 0 ( t ) , − 1 ≤ t ≤ 0 . Find κ and τ generating a desired solution, say one with a desired oscillation. We will control the weight κ and the time delay τ as real numbers. Instead of R ( y ) = y 3 , consider more general reaction terms like R ( y ) = ( y − y 1 )( y − y 2 )( y − y 3 ) and y ′ ( t ) + R ( y ( t )) = κ y ( t − τ ) . Pyragas feedback control: y ′ ( t ) + R ( y ( t )) = κ ( y ( t − τ ) − y ( t )) . Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 5 / 41

  10. PDE case So far, we had y : [ 0 , T ] → R . Let y also depend on a spatial variable x ∈ Ω ⊂ R n , y = y ( x , t ) , and consider Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 6 / 41

  11. PDE case So far, we had y : [ 0 , T ] → R . Let y also depend on a spatial variable x ∈ Ω ⊂ R n , y = y ( x , t ) , and consider ( ∂ t y − ∆ x y + R ( y ))( x , t ) = κ y ( x , t − τ ) in Ω × ( 0 , T ) y = y 0 , in Ω × [ − τ, 0 ] ∂ n y = 0 in ∂ Ω × ( 0 , T ) . Reaction term: R ( y ) = ρ ( y − y 1 )( y − y 2 )( y − y 3 ) , ρ > 0 , y 1 ≤ y 2 ≤ y 3 . Let R ′ ( y ) . m R := min y Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 6 / 41

  12. Multiple time delays More general are multiple time delays 0 ≤ τ 1 < τ 2 . . . < τ m ≤ T , � m ( ∂ t y − ∆ y + R ( y ))( x , t ) = i = 1 κ i y ( x , t − τ i ) ( x , t ) ∈ Q = Ω × ( 0 , T ) y = y 0 in Q − = Ω × [ − T , 0 ] ∂ n y = 0 in Σ = ∂ Ω × ( 0 , T ) . Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 7 / 41

  13. Multiple time delays More general are multiple time delays 0 ≤ τ 1 < τ 2 . . . < τ m ≤ T , � m ( ∂ t y − ∆ y + R ( y ))( x , t ) = i = 1 κ i y ( x , t − τ i ) ( x , t ) ∈ Q = Ω × ( 0 , T ) y = y 0 in Q − = Ω × [ − T , 0 ] ∂ n y = 0 in Σ = ∂ Ω × ( 0 , T ) . This is feedback with control m � u ( x , t ) = κ i y ( x , t − τ i ) . i = 1 Application: Laser technology, research in treatment of Parkinson’s disease, ... Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 7 / 41

  14. Multiple time delays More general are multiple time delays 0 ≤ τ 1 < τ 2 . . . < τ m ≤ T , � m ( ∂ t y − ∆ y + R ( y ))( x , t ) = i = 1 κ i y ( x , t − τ i ) ( x , t ) ∈ Q = Ω × ( 0 , T ) y = y 0 in Q − = Ω × [ − T , 0 ] ∂ n y = 0 in Σ = ∂ Ω × ( 0 , T ) . This is feedback with control m � u ( x , t ) = κ i y ( x , t − τ i ) . i = 1 Application: Laser technology, research in treatment of Parkinson’s disease, ... We will optimize the weights κ i and the delays τ i for fixed m . Set τ := ( τ 1 , . . . , τ m ) , κ := ( κ 1 , . . . , κ m ) , u := ( τ, κ ) . Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 7 / 41

  15. Outline Introduction 1 Control-to-state mapping 2 Optimization problem 3 Numerical Discretization 4 Numerical examples 5 Nonlocal Pyragas type feedback 6 The problem of stability 7 Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 8 / 41

  16. Existence and uniqueness Hale and Ladeira (1991) proved existence and uniqueness of y , locally in time. Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 9 / 41

  17. Existence and uniqueness Hale and Ladeira (1991) proved existence and uniqueness of y , locally in time. Joint with E. Casas and M. Mateos, we considered the more general Nonlocal problem with Borel measure µ ∈ M [ 0 , T ] � T ∂ t y ( x , t ) − ∆ y ( x , t ) + R ( y ( x , t )) = 0 y ( x , t − s ) d µ ( s ) ( x , t ) ∈ Q y = y 0 in Q − ∂ n y = 0 in Σ . Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 9 / 41

  18. Existence and uniqueness Hale and Ladeira (1991) proved existence and uniqueness of y , locally in time. Joint with E. Casas and M. Mateos, we considered the more general Nonlocal problem with Borel measure µ ∈ M [ 0 , T ] � T ∂ t y ( x , t ) − ∆ y ( x , t ) + R ( y ( x , t )) = 0 y ( x , t − s ) d µ ( s ) ( x , t ) ∈ Q y = y 0 in Q − ∂ n y = 0 in Σ . µ = � m Particular case of interest: i = 1 κ i δ τ i . Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 9 / 41

  19. Existence and uniqueness Hale and Ladeira (1991) proved existence and uniqueness of y , locally in time. Joint with E. Casas and M. Mateos, we considered the more general Nonlocal problem with Borel measure µ ∈ M [ 0 , T ] � T ∂ t y ( x , t ) − ∆ y ( x , t ) + R ( y ( x , t )) = 0 y ( x , t − s ) d µ ( s ) ( x , t ) ∈ Q y = y 0 in Q − ∂ n y = 0 in Σ . µ = � m Particular case of interest: i = 1 κ i δ τ i . Then � T m � y ( x , t − s ) d µ ( s ) = κ i y ( x , t − τ i ) . 0 i = 1 Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 9 / 41

  20. Existence and uniqueness Hale and Ladeira (1991) proved existence and uniqueness of y , locally in time. Joint with E. Casas and M. Mateos, we considered the more general Nonlocal problem with Borel measure µ ∈ M [ 0 , T ] � T ∂ t y ( x , t ) − ∆ y ( x , t ) + R ( y ( x , t )) = 0 y ( x , t − s ) d µ ( s ) ( x , t ) ∈ Q y = y 0 in Q − ∂ n y = 0 in Σ . µ = � m Particular case of interest: i = 1 κ i δ τ i . Then � T m � y ( x , t − s ) d µ ( s ) = κ i y ( x , t − τ i ) . 0 i = 1 Assume y 0 ∈ C ( Q − ) . Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 9 / 41

  21. The nonlocal problem with measures Theorem (Casas, Mateos, Tr. 2017) For all T > 0 and every µ ∈ M [ 0 , T ] , the nonlocal problem has a unique solution y µ ∈ Y = W ( 0 , T ) ∩ C ( ¯ Q ) . We have � � � y µ � L 2 ( 0 , T ; H 1 (Ω)) ≤ C � y 0 � L 2 ( Q − ) � µ � M [ 0 , T ] + � y 0 ( · , 0 ) � L 2 (Ω) + | R ( 0 ) | � � � y µ � C (¯ Q ) ≤ C � y 0 � C (¯ Q − ) � µ � M [ 0 , T ] + � y 0 ( · , 0 ) � C (¯ Ω) + | R ( 0 ) | , where C depends on � µ � M [ 0 , T ] , but can be taken fixed on bounded subsets of M [ 0 , T ] . Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 10 / 41

  22. The nonlocal problem with measures Theorem (Casas, Mateos, Tr. 2017) For all T > 0 and every µ ∈ M [ 0 , T ] , the nonlocal problem has a unique solution y µ ∈ Y = W ( 0 , T ) ∩ C ( ¯ Q ) . We have � � � y µ � L 2 ( 0 , T ; H 1 (Ω)) ≤ C � y 0 � L 2 ( Q − ) � µ � M [ 0 , T ] + � y 0 ( · , 0 ) � L 2 (Ω) + | R ( 0 ) | � � � y µ � C (¯ Q ) ≤ C � y 0 � C (¯ Q − ) � µ � M [ 0 , T ] + � y 0 ( · , 0 ) � C (¯ Ω) + | R ( 0 ) | , where C depends on � µ � M [ 0 , T ] , but can be taken fixed on bounded subsets of M [ 0 , T ] . = ⇒ Theorem (Casas, Mateos, Tr. 2018) To each weight κ ∈ R m and delay τ ∈ R m , there exists a unique solution y τ,κ ∈ Y . The mapping ( τ, κ ) �→ y τ,κ is continuous from R 2 m to Y . Fredi Tröltzsch (TU Berlin) Time delays 18.10.2019 10 / 41

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend