heater delays simulations and experimental data
play

Heater delays: Simulations and experimental data T. Salmi (TUT), - PowerPoint PPT Presentation

Heater delays: Simulations and experimental data T. Salmi (TUT), and the magnet test teams at LBNL, FNAL and CERN Quench protection topical meeting, Apr 29 2014 Outline Delays in HQ Delays in LQ Delays in 11 T Delays in


  1. Heater delays: Simulations and experimental data T. Salmi (TUT), and the magnet test teams at LBNL, FNAL and CERN Quench protection topical meeting, Apr 29 2014

  2. Outline • Delays in HQ • Delays in LQ • Delays in 11 T • Delays in QXF • Summary of delays and modeling uncertainties at 80% and 50% • References • Additional material: Delays in HD3, Simulation uncertainty analysis, simulation parameters 4/29/2014 T. Salmi 2

  3. HQ01 and HQ02 – Outer layer PH peak power = 50-55 W/cm 2 , τ = 40-45 ms • Thicker insulation: 70 HQ02a (1.9 K) 10 – 30 ms longer delay HQ02a (2.2 K) 60 HQ02 (4.5 K) HQ02, • HQ02b (1.9 K) Impact of T op negligible 75 µm polyimide Sim., HQ02 (1.9 K) 50 Sim., HQ02 (4.5 K) PH delay [ms] • Different coils and test HQ01e (1.9 K) 40 HQ01e (4.4 K) stations: Exp. variation up Sim., HQ01e (1.9 K) to 10 ms Sim., HQ01e (4.5 K) 30 HQ01e, C8 (4.5 K) - Same, well 20 controlled test HQ01, specification 10 25 µm polyimide • Very good modeling 0 agreement 20 40 60 80 100 Magnet current / SSL [%] 4/29/2014 T. Salmi 3

  4. HQ01 and HQ02 – Inner layer PH peak power = 50-55 W/cm 2 , τ = 40-45 ms T op = 1.9 K • No difference in exp. btw 100 HQ01 and HQ02 Meas. HQ01e 90 Meas. HQ02a1 - Not clear why Meas. HQ02a2 80 Simulation HQ02 • 70 Stronger increase of delay Simulation HQ01 PH Delay [ms] at lower current than in OL 60 Meas. HQ02b 50 • Model match well HQ02 at HQ02, 40 high current, but does not 75 µm polyimide 30 catch the low current 20 behaviour 10 HQ01, 25 µm polyimide 0 • HQ01 delays longer than 0.2 0.4 0.6 0.8 1.0 predicted by model Magnet current / SSL 4/29/2014 T. Salmi 4

  5. HQ02 – Delay vs. power T = 1.9 K, τ = 40-45 ms Kapton thickness = 75 µm 60 HQ02a2, OL, 14.6kA 55 HQ02a2, OL, 12 kA • Saturation around HQ02a1, OL, 12 kA 50 50 W/cm 2 HQ02a1, OL, 14.6 kA 45 τ = 90 ms Simulation 12 kA (OL) - A few ms gain PH Delay (ms) 40 Simulation 12 kA, tau = 90 ms possible above Simulation 14.6 kA (OL) 35 that HQ02a2, IL, 14.6 kA 30 • Good modeling 25 agreement for OL OL 20 - (IL not yet done) OL 15 10 IL 5 0 20 40 60 80 Power (W/cm2) 4/29/2014 T. Salmi 5

  6. LQ PH peak power = 40 W/cm 2 , τ = 35 ms Kapton thickness = 25 µm HS HS 70 LQS01 (4.5 K) WS WS Sim., LQ, no gap (4.5 K) 60 Sim., LQ, 10 mm gap (4.5 K) gaps PH delay [ms] HQ01, 45 W/cm2, (4.5 K) 50 HS HS 40 WS WS 30 No gap 20 • Longer delay than in HQ01 10 • Wide segment (WS) has 5 times less heating power but is still 0 important 20 40 60 80 100 Magnet current / SSL [%] 4/29/2014 T. Salmi 6

  7. 11 T (MBHS P01) - Delays PH peak power = 18.5 W/cm 2 , τ = 25 ms Kapton 76 or 203 µm - Simulation for cable B max Kapton 203 µm Kapton 76 µm 250 100 Exp. 2-L (4.5 K) Exp. (PH-1L) (4.6 K) 90 Model-Bmax (4.5 K) Model-Bmax (4.6 K) 200 80 Model - Bmax 1.9 K Exp. 1-L (1.9 K) Delay time [ms] Delay time [ms] Exp. 2-L (1.9 K) 70 Model-Bmax (1.9 K) 150 60 50 40 100 30 20 50 10 0 0 40 60 80 100 40 60 80 100 Magnet current / SSL [%] Magnet current / SSL [%] 4/29/2014 T. Salmi 7

  8. 11 T (MBHS P02) - Delays PH peak power = 40 W/cm 2 , τ = 16 or 31 ms Kapton 114 µm (incl. adhesive) - Simulation For Bmax Kapton 114 µm Delays vs. I mag and T op Impact of tau (RC) 350 OL 4.5 K (HFU1/2) Meas., tau 16 mst 160 OL 1.9 K (HFU1/2) 300 Meas., tau 31 ms 140 OL 4.5 K (HFU2) Simul., tau 16 ms PH delay (ms) 250 PH delay (ms) OL 1.9 K (HFU2) 120 Simul., 31 ms New, Bmax, 4.6 K 200 100 New, Bmax, 1.9 K 150 80 100 60 50 40 P(0) = 40 W/cm 2 , tau 16 ms P(0) = 40 W/cm 2 , 4.6 0 20 0 5000 10000 15000 4000 9000 Current (A) Current (A) 4/29/2014 T. Salmi 8

  9. QXF IL – Option 1 Simulation for 100 W/cm 2 , τ = 47 ms 100 90 80 70 PH delay (ms) 60 IL – Option 2 50 40 30 20 IL Option 2 OL IL Option 1 10 OL 0 Cu Cu SS 0 5000 10000 15000 20000 120 mm Magnet current (A) 40 mm All with polyimide 50 µm T. Salmi 9

  10. ummary – Delays at ~80% S S S L Magnet Ins. Btw. PH PH power Measur. Simulat. Delta (ms) |Delta| and bare cable and τ (RC) (%) 45 W/cm 2 HQ01e (C9) – OL 25 µm Kapt + 8 10 2 25 40-45 ms 90 µm G10 50 W/cm 2 HQ01e (C9) – IL 25 µm Kapt + 13 7 -5 46 90 µm G10 40-45 ms 75 µm Kapt + 55 W/cm 2 HQ02a1 (C20) – OL 18 16 -2 11 90 µm G10 45 ms 75 µm Kapt + 55 W/cm 2 HQ02a1 (C20) – IL 11 10 -1 9 50 ms 90 µm G10 40 W/cm 2 25 µm Kapt + LQ (OL) - 11 - - 35 ms 90 µm G10 ~19 W/cm 2 11 T* (MBHSP01) 76 µm Kapt + - 25 - - 25 ms 200 µm G10 (Thinner ins.) 203 µm Kapt + ~19 W/cm 2 11 T* (MBHSP01) - 55 - - 200 µm G10 25 ms (Thicker ins.) ~40 W/cm 2 114 µm Kapt + 11 T* (MBHSP02) 24 29 5 19 16 ms 200 µm G10 100 W/cm 2 QXF (OL) 50 µm Kapt + - 12 - - 47 ms 150 µm G10 100 W/cm 2 QXF (IL) 50 µm Kapt + - 9 - - 150 µm G10 47 ms 4/29/2014 T. Salmi 10

  11. ummary – Delays at ~50% S S S L Magnet Ins. Btw. PH PH power Measur. Simulat. Delta (ms) |Delta| and bare cable and τ (RC) (%) 45 W/cm 2 HQ01e (C9) – OL 25 µm Kapt + 20 22 2 10 40-45 ms 90 µm G10 50 W/cm 2 HQ01e (C9) – IL 25 µm Kapt + 19 12 -7 37 90 µm G10 40-45 ms 75 µm Kapt + 55 W/cm 2 HQ02a1 (C20) – OL 40 37 -3 8 90 µm G10 45 ms 75 µm Kapt + 55 W/cm 2 HQ02a1 (C20) – IL 25 21 -4 16 50 ms 90 µm G10 40 W/cm 2 25 µm Kapt + LQ (OL) 16 21 5 24 35 ms 90 µm G10 ~19 W/cm 2 11 T* (MBHSP01) 76 µm Kapt + 82 78 -4 5 25 ms 200 µm G10 (Thinner ins.) 203 µm Kapt + ~19 W/cm 2 11 T* (MBHSP01) 207 235 28 13 200 µm G10 25 ms (Thicker ins.) ~40 W/cm 2 114 µm Kapt + 11 T* (MBHSP02) 69 51 -18 36 16 ms 200 µm G10 100 W/cm 2 QXF (OL) 50 µm Kapt + - 28 - - 47 ms 150 µm G10 100 W/cm 2 QXF (IL) 50 µm Kapt + - 34 (opt. 1) - - 150 µm G10 47 ms 28 (opt. 2) 4/29/2014 T. Salmi 11

  12. S ome references Model and simulations: • T. Salmi, et al., IEEE, trans. on appl. supercond., 24 (3), 2014 • T. Salmi, et al., IEEE, trans. on appl. supercond., 24 (4), 2014 • T. Salmi, et al., Proc. WAMSDO, 2013 HQ delay measurements and parameters: • H. Bajas, et al., IEEE, trans. on appl. supercond., 23 (3), 2014 • G. Chlachidze, et al., IEEE, trans. on appl. supercond., 24 (3), 2014 • F. Borgnolutti, et al., IEEE, trans. on appl. supercond., 24 (3), 2014 LQ delay measurements and parameters: • G. Ambrosio, et al., IEEE, trans. on appl. supercond., 21 (3), 2014 • G. Chlachidze, et al., TD-10-001, 2001 • T. Salmi, et al, Proc. CEC, vol. 57, 2012 11 T delay measurements and parameters: • A. V. Zlobin, et al., IEEE, trans. on appl. supercond., 24 (3), 2014 • G. Chlachidze, Proc. WAMSDO, 2013 • E. Barzi, et al., FERMILAB-TM-2552-TD QXF parameters: • SQXF1 design report v2b, downloaded from the US LARP plone site, March 14, 2014 Also information, data, and input from Guram C., Fred N., Helene F., Bernhard A, Maxim M., …… 4/29/2014 T. Salmi 12

  13. Additional material 4/29/2014 T. Salmi 13

  14. HD3 HD3 Layer 1 Layer� 1� PH peak power = 42 W/cm 2 (V = 225 V), 55 W/cm 2 (V = 260 V), Layer� 2� HD3 Layer 2 τ = 48 (L1), 42 (L2) ms Kapton thickness = 25 µm Layer 1 (inner) Layer 2 (outer) 80 100 Meas. L2, VPH = 260 V Meas. L1, VPH = 260 V Meas. L2, VPH = 225 V 90 Meas. L1, VPH = 225 V 70 Sim. C1, VPH = 225 V, 4th turn Sim. C1, VPH = 225 V, 4th turn Sim. C1, VPH = 225 V, 9th turn 80 Sim. C1, VPH = 225 V, 8th turn Sim. C1, VPH = 260 V, 4th turn Sim. C1, VPH = 260 V, 4th turn 60 Sim. C1, VPH = 260 V, 9th turn 70 Sim. C1, VPH = 260 V, 8th turn PH delay [ms] PH delay [ms] 50 60 50 40 40 30 30 20 20 10 10 0 0 4 6 8 10 12 14 16 4 6 8 10 12 14 16 Magnet current [kA] Magnet current [kA] 4/29/2014 T. Salmi 14

  15. S imulation sensitivity analysis • An individual input parameter, or material property, is varied by +/- 10% • The relative delay response is studied • A delay at 80% of SSL Biggest impact: Field, PH power and cable insulation thickness Relative influence on the delay [%] Relative influence on the delay [%] -20 -10 0 10 20 -8 -6 -4 -2 0 2 4 6 8 Magnetic field Cu cp PH power or voltage Cu k Cable ins. thickness G10 cp Polyimide thickness Variable +/- 10% Variable +/- 10% SS thickness G10 k Cable width Polyim. cp PH coverage Polyim. k Cu/Non-Cu SS cp HQ01 +10% PH tau RC HQ02 +10% SS k HQ01 +10% RRR HD3 +10% HD3 +10% Epoxy cp Epoxy fraction HQ02 -10% HQ01 -10% Top ins. thickness SC cp HQ01 -10% Bottom ins. thickness HD3 -10% SS ρ HD3 -10% Initial temperature* 4/29/2014 T. Salmi 15

  16. S imulation parameters (to be completed) 11 T (MBHSP01 / QXF HQ01/HQ02 HD3 (C3, C1) MBHSP02) SSL @ 1.9 K (kA9 19.3 / 18.3 15.4 / 16.0 20.7 (C3) SSL @ 4.4 K (kA) 17.5 / 16.6 13.8 / 14.3 18.7, 18.9 Operation current 17500 A Bpeak field at Iop 12.1 T Transposition pitch (mm) 109 # of strands 40 35 40 51 Strand diam. (mm) 0.85 0.8 / 0.778 0.7 Cu fraction 0.55 1.05 / 1.20 1.02 0.83, 0.65 RRR 150 190 / 155 100 150, 100 Reacted cable width (mm) 18.5 15.0 14.9 22.0 Insulation (mm) 0.15 0.09 / 0.1 0.1 + 0.1 0.1 Voids fraction (epoxy) 0.15 0.12 / 0.15 0.12 0.12 30.88 T and 1519 Bc20m and C for Jc fit TA Midplane thickn. (per coil) 0.250 0.35 0.35 0.55 (mm) Insulation btw IL ss heater 0.150 0.25 - 0.635 (to L1) and the bore (mm) 4/29/2014 T. Salmi 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend