on the universality of the chern simons diffusion rate
play

On the Universality of the Chern-Simons Diffusion Rate Aldo L. - PowerPoint PPT Presentation

On the Universality of the Chern-Simons Diffusion Rate Aldo L. Cotrone Florence University Supersymmetric Quantum Field Theories in the Non-perturbative Regime May 9, 2018 Work in collaboration with Francesco Bigazzi (INFN, Florence) and


  1. On the Universality of the Chern-Simons Diffusion Rate Aldo L. Cotrone Florence University Supersymmetric Quantum Field Theories in the Non-perturbative Regime May 9, 2018 Work in collaboration with Francesco Bigazzi (INFN, Florence) and Flavio Porri (Florence University) arXiv:1804.09942 Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  2. The Chern-Simons diffusion rate Definition: 1 32 π 2 Tr F ˜ Q ( x ) = F Change in the Chern-Simons number � d 4 x Q ( x ) ∆ N CS = Chern-Simons diffusion rate Γ CS = � (∆ N CS ) 2 � � d 4 x � Q ( x ) Q (0) � = Vt V = volume , t = time Note: Minkowski correlator, real time physics. Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  3. The Chern-Simons diffusion rate On a state with temperature T (e.g. Quark-Gluon Plasma): Kubo formula: 2 T ω Im G R ( ω, � Γ CS = − lim k = 0) ω → 0 Thus: compute retarded correlator G R ( ω, � k = 0). Genesis: thermal fluctuations can excite sphalerons ⇒ sphalerons decay ⇒ ∆ N CS � = 0 (locally). Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  4. The Chern-Simons diffusion rate Why Γ CS interesting Baryogenesis in Standard Model: sphaleron transitions cause ∆( B + L ) � = 0. Many studies at weak coupling. Chiral magnetic effect in QGP. Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  5. The Chern-Simons diffusion rate Chiral magnetic effect [Fukushima-Kharzeev-Warringa 2008] Axial anomaly: ∂ µ J µ A = − 2 Q Then: ∆ N CS generates a ∆ chirality ⇒ µ A � = 0 (chemical potential). Non central collisions in QGP have large magnetic field � B . J em = σ CME � ∆ chirality + � B generate electric current � B , with σ CME = e 2 2 π µ A . Currently under experimental search at RHIC and LHC. Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  6. The Chern-Simons diffusion rate Magnitude of Γ CS in the QGP? Real time non-perturbative physics: no reliable computational methods in QCD. Effective theory result [Moore-Tassler 2010] : Γ CS ∼ c · λ 5 T 4 λ = g 2 YM N c ′ t Hooft coupling Notes: c is non-perturbative; result valid at α s ≪ 1. Γ CS ∼ O ( N 0 c ). Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  7. Holographic derivation The Chern-Simons diffusion rate in N = 4 SYM [Son-Starinets 2002] Background is BH − AdS 5 × S 5 , generated by N c D3-branes. D3-brane action contains � d 4 x C F ˜ F ⇒ gravity field dual to Q is RR-potential C . Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  8. Holographic derivation The Chern-Simons diffusion rate in N = 4 SYM [Son-Starinets 2002] Action for C in 5d: d 5 x √− g 5 � � − 1 � 2 ∂ M C ∂ M C Solve eq of motion for C ⇒ Retarded correlator G R . Use Kubo, result λ 2 256 π 3 T 4 Γ CS = Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  9. Holographic derivation Comments: N = 4 SYM “a bit different from QCD”. Other holographic results look different, eg: N = 4 SYM with magnetic field B [Basar-Kharzeev 2012] : � 2 � 1 λ Γ CS = Γ CS ( B = 0) · f ( B ) = sT s = entropy density 2 7 π 5 N c N = 4 SYM with anisotropy a [Bu 2014] : � 2 � 1 λ Γ CS = Γ CS ( a = 0) · g ( a ) = sT s = entropy density 2 7 π 5 N c Witten model of holographic Yang-Mills [Craps et al 2012] : � 2 � λ 3 KK T 6 = 1 1 1 λ Γ CS = sT s = entropy density 2 π 3 6 π 2 M 2 2 7 π 5 N c ... 1 Situation different from universal η s = [Kovtun-Son-Starinets 2004] . 4 π Or does it?! Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  10. Holographic derivation Comments: N = 4 SYM “a bit different from QCD”. Other holographic results look different, eg: N = 4 SYM with magnetic field B [Basar-Kharzeev 2012] : � 2 � 1 λ Γ CS = Γ CS ( B = 0) · f ( B ) = sT s = entropy density 2 7 π 5 N c N = 4 SYM with anisotropy a [Bu 2014] : � 2 � 1 λ Γ CS = Γ CS ( a = 0) · g ( a ) = sT s = entropy density 2 7 π 5 N c Witten model of holographic Yang-Mills [Craps et al 2012] : � 2 � λ 3 KK T 6 = 1 1 1 λ Γ CS = sT s = entropy density 2 π 3 6 π 2 M 2 2 7 π 5 N c ... 1 Situation different from universal η s = [Kovtun-Son-Starinets 2004] . 4 π Or does it?! Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  11. “Universality” of the result “Wrapped brane models” Wrap Dp-brane on ( p − 3)-cycle Ω p − 3 ⇓ 4d gauge theory in IR N = 4 SYM included. Some of the most interesting models included (Witten-Sakai-Sugimoto, Maldacena-Nu˜ nez, ...). All computations of Γ CS in the literature performed in this class of models. Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  12. “Universality” of the result Expanding DBI+WZ action at low energies get 1 Tr F 2 − θ YM 32 π 2 Tr F ˜ L = − F 4 g 2 YM with 1 � p − 7 τ p (2 πα ′ ) 2 d p − 3 x e 4 φ � = det ( g E ) g 2 Ω p − 3 YM � τ p (2 πα ′ ) 2 θ YM = C p − 3 Ω p − 3 Thus: gravity field dual to Q is � C ≡ τ p (2 π ) 2 (2 πα ′ ) 2 C p − 3 Ω p − 3 Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  13. “Universality” of the result Derivation of the 5 d action of C Action of F ( p − 2) = dC ( p − 3) in 10 d d 10 x √− g 10 e � � 1 � − 1 7 − p 2 F 2 2 φ ( p − 2) 2 κ 2 10 Reduction ansatz 10 = e f ds 2 ds 2 5 + ds 2 int Reduction of F ( p − 2) C ∂ M ˜ ( p − 2) = ∂ M ˜ F 2 p − 3 )] − 1 e − f C [ det ( g Ω ′ where C = τ p (2 π ) 2 (2 πα ′ ) 2 Vol (Ω p − 3 ) ˜ C Ω ′ p − 3 has unit volume. Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  14. “Universality” of the result Final result: d 5 x √− g 5 H 1 � � − 1 � 2 ∂ M C ∂ M C 2 κ 2 5 with 2   g 4 1 1 YM H = = 4 φ √ det g E   p − 7 (2 π ) 4 (8 π 2 ) 2 τ p (2 πα ′ ) 2 � Ω p − 3 e ⇓ 1 Chern-Simons diffusion rate has “universal” form Γ CS = α 2 s ( T ) (2 π ) 3 sT 1[Son-Starinets 2002, Gursoy-Iatrakis-Kiritsis-Nitti-O’Bannon 2013] Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  15. “Universality” of the result Comments: Checked also in N = 4 SYM with flavors and N = 1 models. Can calculate first 1 /λ correction: Γ CS decreases [Bu 2014] . Is holographic result an upper bound on Γ CS ? Problem in extending result to other models: identification of coupling λ and gravity field dual to Q . Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  16. Inclusion of the anomaly Anomaly ∂ µ J µ A = − qQ holographically reproduced by Stuckelberg action [Klebanov et al 2002] d 5 x √− g 5 � � 1 � − 1 − 1 � ∂ M C + qA M � 4 F MN F MN 2 ( ∂ M C + qA M ) 2 κ 2 5 A M : gravity field dual to J µ A ; q : anomaly coefficient. From dimensional reduction of main holographic models: Klebanov-Strassler, N = 4 with flavors, Maldacena-Nu˜ nez, Witten-Sakai-Sugimoto. Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  17. Inclusion of the anomaly Define B = ( dC + qA ) ⇒ dB = qF ≡ F B ⇓ action for a massive vector (mass ∼ q ) d 5 x √− g 5 1 � − 1 − 1 � � 2 q 2 B 2 4 F B , MN F MN B 2 κ 2 5 q 2 Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  18. Inclusion of the anomaly Calculation of G R on generic BH background (mild assumptions): Near horizon � r � ∆ � � − i ω 1 − r T � � 1 − r � � b (0) + b (1) B t ∼ + · · · h h r h r h r h (4∆(∆ − 1) = q 2 ) Get 1 ω Im G R ∼ α · | b (0) h | 2 with α independent of ω . For ω → 0 � q 2 � b (1) · b (0) = i ω + regular in ω h h ⇒ Two possibilities: q = 0 (no anomaly), or b (0) ∼ ω a with a ≥ 1 for ω → 0 ⇒ Γ CS ( q � = 0) = 0. h Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  19. Inclusion of the anomaly Numeric result on AdS -BH: ( 0 ) 2 | b h 1.5 1.0 0.5 ω 0.2 0.4 0.6 0.8 1.0 Black: q = 0. Blue: q = 0 . 04. Red: q = 0 . 44. Green: q = 3. Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  20. Inclusion of the anomaly Why expected: Anomaly ( ∂ µ J µ A = − qQ ) ⇒ Γ CS ∼ � QQ � ∼ � ∂ J A ∂ J A � d 3 x J t � Q A = A not conserved (anomaly), thus Γ CS ∼ �Q A ( t → ∞ ) Q A (0) � R = 0 In fact, with only gapped modes expect �Q A ( t ) Q A (0) � R ∼ e − t τ τ : relaxation time. Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

  21. Inclusion of the anomaly Definition of Γ CS makes sense if there is separation of time scales: [Moore-Tassler 2010] ∆ t < t ∗ ≪ τ ∆ t = ( microscopic ) time scale of CS number fluctuations t ∗ = cut − off τ = relaxation time Thus can define � t ∗ � d 3 x � Q ( t , x ) Q (0) � Γ CS = dt Note: Can remove cut-off if τ → ∞ . Large N c : τ ∼ N 2 c / T ≫ 1 / T ∼ microscopic time scale. Aldo L. Cotrone On the Universality of the Chern-Simons Diffusion Rate

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend