symmetry breaking in quantum curves super chern simons
play

Symmetry Breaking in Quantum Curves & Super Chern-Simons Matrix - PowerPoint PPT Presentation

YITP Workshop 19/08/20 Symmetry Breaking in Quantum Curves & Super Chern-Simons Matrix Models Sanefumi Moriyama (Osaka City Univ/NITEP) Main References: S.M., S.Nakayama, T.Nosaka, JHEP, 2017; S.M., T.Nosaka, T.Yano, JHEP, 2017; N.Kubo,


  1. YITP Workshop 19/08/20 Symmetry Breaking in Quantum Curves & Super Chern-Simons Matrix Models Sanefumi Moriyama (Osaka City Univ/NITEP) Main References: S.M., S.Nakayama, T.Nosaka, JHEP, 2017; S.M., T.Nosaka, T.Yano, JHEP, 2017; N.Kubo, S.M., T.Nosaka, JHEP, 2018. ←

  2. Matrix Model = Spectral Theory • M-Theory, Mother, Membrane (M2), Mystery • ABJM Theory for Multiple M2-branes [Aharony-Bergman-Jafferis-Maldacena 2008] • Partition Function is Localized to Matrix Model [Kapustin-Willett-Yaakov 2009] • Large N Expansion = N 3/2 , Airy Function [Drukker-Marino-Putrov 2010, Fuji-Hirano-M 2011] • Matrix Model as Spectral Det, Det( 1 + z H −1 ) (Fermi Gas Formalism) [Marino-Putrov 2011]

  3. Matrix Model = Topological String • Matrix Model by Topological Strings [Hatsuda-Marino-M-Okuyama 2013] • Many Generalizations [... ... … 2013-2019] But, Why Interesting? What is New?

  4. No More Matrix Models • ST / TS Correspondence (Spectral Theories / Topological Strings) [Grassi-Hatsuda-Marino 2014] • On one hand, Matrix Model = Spectral Theory • On the other hand, Matrix Model = Topological String

  5. Advantages of ST / TS • At Least Technically, Group Theoretical Structure - So Far, Free Energy of Topological Strings in Kahler Parameters … Complicated & Ambigous … - With Group Theoretical Structure, in Characters • Conceptually, replace MM by ST / TS? Moduli of M2 Weyl Group

  6. Especially, in ”Strings & Fields 2017” • Free Energy of Topological Strings F = Σ N [(characters) e −μ / k + { (characters) μ + ∂(characters) } e −μ ] N : Multiplicities of Representations (BPS indices) - (2,2) Model, so(10) → so(8) - Rank Deformations, so(10) → [su(2)] 3 For D5 [=so(10)] Del Pezzo Geometry

  7. Especially, in ”Strings & Fields 2017” • Free Energy of Topological Strings F = Σ N [(characters) e −μ / k + { (characters) μ + ∂(characters) } e −μ ] N : Multiplicities of Representations (BPS indices) - (2,2) Model, so(10) → so(8) - Rank Deformations, so(10) → [su(2)] 3 Question: Explain the Symmetry Breaking!

  8. Contents 1. ABJM Theory (Background) 2. Super Chern-Simons Theories (Question) 3. Symmetry, Symmetry Breaking (Answer)

  9. 1. ABJM Theory (Background)

  10. ABJM Theory N =6 Chern-Simons Theory U( N ) k U( N ) - k [Aharony-Bergman-Jafferis-Maldacena 2008] N x M2 on C 4 / Z k

  11. Brane Configuration in IIB From Large Supersymmetries [Kitao-Ohta-Ohta 1998, ...] N x D3-branes → T-duality to IIA N x D3-branes → Lift to M-Theory NS5-brane (1, k )5-brane (IIB String Theory)

  12. Grand Canonical Ensemble • Partition Function Z k ( N ) & Grand Partition F [Marino-Putrov 2011] Ξ k ( z ) = Σ N =0 ∞ z N Z k ( N ) ( N : Particle Number, z : Dual Fugacity) • Spectral Determinant Ξ k ( z ) = Det( 1 + z H −1 ) H −1 = ( P 1/2 + P −1/2 ) −1 ( Q 1/2 + Q −1/2 ) −1 or H = ( Q 1/2 + Q −1/2 ) ( P 1/2 + P −1/2 ) ( Q = e q , P = e p , [ q , p ] = i 2 πk ) NS5 (1, k )5

  13. From Matrix Models To Curves [Marino-Putrov 2011] [..., Hatsuda-Marino-M-Okuyama 2013] Grand Partition Function Ξ k ( z ) Spectral Det Free Energy of Top Strings Det ( 1 + z H −1 ) exp [ Σ N dj L, j R F dj L, j R ( T ) ] N dj L, j R : BPS index on H = ( Q 1/2 + Q −1/2 ) ( P 1/2 + P −1/2 ) Local P 1 x P 1 (Curve Eq of Local P 1 x P 1 ) d : degree, ( j L , j R ): spins T = T ( z ) : Kahler Parameters

  14. From Matrix Models To Curves (Without Referring To Matrix Model) [Grassi-Hatsuda-Marino 2014] Spectral Det Free Energy of Top Strings Det ( 1 + z H −1 ) exp [ Σ N dj L, j R F dj L, j R ( T ) ] H = (Curve Eq) N dj L, j R : BPS index Q = e q , P = e p , [ q , p ] = i 2 πk on the Curve

  15. 2. Super Chern-Simons Theories (Questions)

  16. As a simple generalization • (2,2) Model [M-Nosaka 2014] Spectral Det Free Energy of Top Strings Det ( 1 + z H −1 ) exp [ Σ N dj L, j R F dj L, j R ( T ) ] N dj L, j R : BPS index on H =( Q 1/2 + Q −1/2 ) 2 ( P 1/2 + P −1/2 ) 2 Local D5 Del Pezzo NS5 (1, k )5

  17. Natural Because For (2,2) Model H = ( Q 1/2 + Q −1/2 ) 2 ( P 1/2 + P −1/2 ) 2 = Q 1 P 1 +2 P 1 + Q −1 P 1 +2 Q 1 +4+2 Q −1 + Q 1 P −1 +2 P −1 + Q −1 P −1 Well-known Newton Polygon of D5 [=so(10)] Curve P # Q #

  18. Also • (1,1,1,1) Model [Honda-M 2014] H = ( Q 1/2 + Q −1/2 ) 1 ( P 1/2 + P −1/2 ) 1 ( Q 1/2 + Q −1/2 ) 1 ( P 1/2 + P −1/2 ) 1 = Q 1/2 P 1/2 Q 1/2 P 1/2 + … = q −1/4 Q P + … (Since P α Q β = q − αβ Q β P α , q = e 2 π i k ) The Same D5 Curve

  19. Furthermore, Two Models are • connected by Rank Deformations ( M 1 , M 2 ) Hanany-Witten Transition • described by Topological Strings in A Single Function: Free Energy of Top Strings exp [ Σ N dj L, j R F dj L, j R ( T ) ] - Prepare Six Kahler Parameters T i ± = ... ( i = 1,2,3) - Total BPS indices are distributed by Various Combinations [M-Nakayama-Nosaka 2017]

  20. Decomposition of BPS index • Explicitly, 6 Degrees for 6 Kahler Parameters Σ N d ( j L, j R) ( d 1+ , d 2+ , d 3+ ; d 1− , d 2− , d 3− ) ・ ( T 1+ , T 2+ , T 3+ ; T 1− , T 2− , T 3− ) • BPS Index - d =1, ( j L , j R )=(0,0) 16 → 2(1,0,0;0,0,0)+4(0,1,0;0,0,0)+2(0,0,1;0,0,0) +2(0,0,0;1,0,0)+4(0,0,0;0,1,0)+2(0,0,0;0,0,1) From Tables in [Huang-Klemm-Poretschkin 2013] How About Higher Degrees?

  21. Decomposition of BPS index { d = ( d + 1 , d + 2 , d + ± N d | d | 3 ; d − 1 , d − 2 , d − 3 ) } j L ,j R ( j L , j R ) (1 , 0 , 0; 0 , 0 , 0) (0 , 0 , 0; 1 , 0 , 0) 2(0 , 0) 1 (0 , 1 , 0; 0 , 0 , 0) (0 , 0 , 0; 0 , 1 , 0) 4(0 , 0) (0 , 0 , 1; 0 , 0 , 0) (0 , 0 , 0; 0 , 0 , 1) 2(0 , 0) (0 , 1 (0 , 2 , 0; 0 , 0 , 0) , (1 , 0 , 1; 0 , 0 , 0) (0 , 0 , 0; 0 , 2 , 0) , (0 , 0 , 0; 1 , 0 , 1) 2 ) 2(0 , 1 2 (1 , 0 , 0; 0 , 1 , 0) , (0 , 1 , 0; 0 , 0 , 1) (0 , 1 , 0; 1 , 0 , 0) , (0 , 0 , 1; 0 , 1 , 0) 2 ) 4(0 , 1 (1 , 0 , 0; 1 , 0 , 0) , (0 , 1 , 0; 0 , 1 , 0) , (0 , 0 , 1; 0 , 0 , 1) 2 ) (2 , 0 , 0; 1 , 0 , 0) , (0 , 2 , 0; 0 , 0 , 1) , (1 , 0 , 0; 2 , 0 , 0) , (0 , 0 , 1; 0 , 2 , 0) , 2(0 , 1) (1 , 1 , 0; 0 , 1 , 0) , (1 , 0 , 1; 0 , 0 , 1) (0 , 1 , 0; 1 , 1 , 0) , (0 , 0 , 1; 1 , 0 , 1) Decompositions Not Unique (0 , 2 , 0; 0 , 1 , 0) , (1 , 0 , 1; 0 , 1 , 0) , (0 , 1 , 0; 0 , 2 , 0) , (0 , 1 , 0; 1 , 0 , 1) , 3 4(0 , 1) (1 , 1 , 0; 1 , 0 , 0) , (0 , 1 , 1; 0 , 0 , 1) (1 , 0 , 0; 1 , 1 , 0) , (0 , 0 , 1; 0 , 1 , 1) Due to Relations among T 's (0 , 0 , 2; 0 , 0 , 1) , (0 , 2 , 0; 1 , 0 , 0) , (0 , 0 , 1; 0 , 0 , 2) , (1 , 0 , 0; 0 , 2 , 0) , 2 T 2 ± = T 1 ± + T 3 ± , 2(0 , 1) (0 , 1 , 1; 0 , 1 , 0) , (1 , 0 , 1; 1 , 0 , 0) (0 , 1 , 0; 0 , 1 , 1) , (1 , 0 , 0; 1 , 0 , 1) T 1+ + T 1− = T 2+ + T 2− = T 3+ + T 3− , ... Ambiguous, A Trouble ... ...

  22. Organizing BPS Index Differently [M-Nosaka-Yano 2018] In ( M 1 , M 2 )=( M ,0) Deformation, d II N ( d,d I ,d II ) ( − 1) d − 1 � �� � ( j L , j R ) BPS d j L ,j R d I d I 1 (0 , 0) 16 8 +1 + 8 − 1 (0 , 1 2 2 ) 10 1 +2 + 8 0 + 1 − 2 3 (0 , 1) 16 8 +1 + 8 − 1 (0 , 1 4 2 ) 1 1 0 (0 , 3 2 ) 45 8 +2 + 29 0 + 8 − 2 ( 1 2 , 2) 1 1 0 Reminiscent of 45 → 28 0 + 8 +2 + 8 −2 + 1 0 in so(10) → so(8)

  23. Organizing BPS Index Differently In General ( M 1 , M 2 ) Deformation, � � ( − 1) d − 1 � N ( d,d I ,d II ) ( j L , j R ) BPS d d I d II j L ,j R d II 1 (0 , 0) ± 1 8 2 +1 + 4 0 + 2 − 1 (0 , 1 2 2 ) 0 8 2 +1 + 4 0 + 2 − 1 ± 2 1 1 0 3 (0 , 1) ± 1 8 2 +1 + 4 0 + 2 − 1 (0 , 1 4 2 ) 0 1 1 0 (0 , 3 2 ) 0 29 1 +2 + 8 +1 + 11 0 + 8 − 1 + 1 − 2 ± 2 8 2 +1 + 4 0 + 2 − 1 Interpreted As Further Decomposition so(8)→[su(2)] 3 ( 1 e.g. 28→(3,1,1,1)+(1,3,1,1)+(1,1,3,1)+(1,1,1,3)+(2,2,2,2) 2 , 2) 0 1 1 0 in so(8) → [su(2)] 4

  24. Finally, M 2 (1,1,1,1) [su(2)] 3 (2,2) M 1 so(8)

  25. A Natural Question Nice to Summarize Numerical Results by so(10) → so(8) & so(8) → [su(2)] 3 • But Why ? Any Explanations ? [Also Raised by Y.Hikida & S.Sugimoto, "Strings & Fields 2017"] • Now We Have Answer From Curve Viewpoint

  26. 3. Symmetry, Symmetry Breaking (Answer)

  27. Strategy ① D5 Weyl Action on D5 Curve ② (2,2) Model in D5 Curve ③ Unbroken Symmetry for Models

  28. Quantum Curve As Classical Curves are Defined by Zeros of Polynomial Rings • Definition: Spectral Problem of H = Σ c mn Q m P n ( P α Q β = q − αβ Q β P α , q = e 2 π i k ) Invariant under Similarity Transf. P # H ~ G H G −1 • For D5 Quantum Curve Q # H = Σ ( m,n ) ∈ {−1,0,1} x {-1,0,1} c mn Q m P n

  29. Parameterization Parameterize D5 Curve by “Asymptotic Values” H / α = Q P − ( e 3 + e 4 ) P + e 3 e 4 Q − 1 P − ( e 1−1 + e 2−1 ) Q + E / α − ... Q − 1 + ( e 1 e 2 ) −1 Q P −1 + ... Q − 1 P −1 − ... P −1 e 4 e 3 P = ∞ e 5 / h 2 1/ e 2 Subject to Vieta's Formula e 6 / h 2 1/ e 1 解と係数の関係 ( h 1 h 2 ) 2 = e 1 ... e 8 P =0 h 1 / e 7 h 1 / e 8 Q =0 Q = ∞

  30. ① D5 Weyl Transformation 1 5 Trivial Transformations 3 4 (Switching Asymptotic Values) 2 0 s 1 : h 1 / e 7 ⇔ h 1 / e 8 s 2 : e 3 ⇔ e 4 e 4 e 3 P = ∞ s 5 : 1/ e 1 ⇔ 1/ e 2 e 5 / h 2 1/ e 2 s 0 : e 5 / h 2 ⇔ e 6 / h 2 e 6 / h 2 1/ e 1 P =0 h 1 / e 7 h 1 / e 8 Q =0 Q = ∞

  31. ① D5 Weyl Transformation 1 5 Nontrivial s 3 and s 4 3 4 by Suitable Similarity Transf. 2 0 Q' = GQG −1 , P' = GPG −1 s 3 : e 3 ⇔ h 1 / e 7 e 4 e 3 P = ∞ s 4 : 1/ e 1 ⇔ e 5 / h 2 e 5 / h 2 1/ e 2 e 6 / h 2 1/ e 1 Totally, D5 Weyl Transf. P =0 h 1 / e 7 h 1 / e 8 Q =0 Q = ∞

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend