on the symmetric enveloping algebra of planar algebra
play

On the symmetric enveloping algebra of planar algebra subfactors - PowerPoint PPT Presentation

On the symmetric enveloping algebra of planar algebra subfactors (Joint work with V. Jones and D. Shlyakhtenko) Stephen Curran UCLA Workshop on II 1 factors Institut Henri Poincar e May 26, 2011 Stephen Curran (UCLA) Symmetric enveloping


  1. On the symmetric enveloping algebra of planar algebra subfactors (Joint work with V. Jones and D. Shlyakhtenko) Stephen Curran UCLA Workshop on II 1 factors Institut Henri Poincar´ e May 26, 2011 Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 1 / 16

  2. Planar algebras A (subfactor) planar algebra is a sequence of finite dimensional vector spaces ( P n , ± ) n ≥ 0 with an action of planar tangles . Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 2 / 16

  3. Planar algebras A (subfactor) planar algebra is a sequence of finite dimensional vector spaces ( P n , ± ) n ≥ 0 with an action of planar tangles . D 1 T = D 2 Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 2 / 16

  4. Planar algebras A (subfactor) planar algebra is a sequence of finite dimensional vector spaces ( P n , ± ) n ≥ 0 with an action of planar tangles . D 1 T = D 2 Z T : P 3 , − ⊗ P 2 , + → P 3 , + Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 2 / 16

  5. Planar algebras A (subfactor) planar algebra is a sequence of finite dimensional vector spaces ( P n , ± ) n ≥ 0 with an action of planar tangles . D 1 T = S = D 2 Z T : P 3 , − ⊗ P 2 , + → P 3 , + Z S : P 0 → P 2 , + Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 2 / 16

  6. Planar algebras A (subfactor) planar algebra is a sequence of finite dimensional vector spaces ( P n , ± ) n ≥ 0 with an action of planar tangles . D 1 T ◦ 2 S = S = Z T : P 3 , − ⊗ P 2 , + → P 3 , + Z S : P 0 → P 2 , + Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 2 / 16

  7. Planar algebras A (subfactor) planar algebra is a sequence of finite dimensional vector spaces ( P n , ± ) n ≥ 0 with an action of planar tangles . D 1 T ◦ 2 S = S = Z T : P 3 , − ⊗ P 2 , + → P 3 , + Z S : P 0 → P 2 , + Z T ◦ 2 S = Z T ◦ 2 Z S Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 2 / 16

  8. Planar algebras A (subfactor) planar algebra is a sequence of finite dimensional vector spaces ( P n , ± ) n ≥ 0 with an action of planar tangles . D 1 T = S = D 2 Z T : P 3 , − ⊗ P 2 , + → P 3 , + Z S : P 0 → P 2 , + Z T ◦ 2 S = Z T ◦ 2 Z S Further conditions: P 0 = C , ∗ -structure, positivity, sphericality. Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 2 / 16

  9. Planar algebras A (subfactor) planar algebra is a sequence of finite dimensional vector spaces ( P n , ± ) n ≥ 0 with an action of planar tangles . D 1 T = S = D 2 Z T : P 3 , − ⊗ P 2 , + → P 3 , + Z S : P 0 → P 2 , + Z T ◦ 2 S = Z T ◦ 2 Z S Further conditions: P 0 = C , ∗ -structure, positivity, sphericality. Follows that there is δ ∈ { 2 cos( π/ n ) : n ≥ 3 } ∪ [2 , ∞ ] s.t. Z T ′ = δ · Z T Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 2 / 16

  10. Planar algebras A (subfactor) planar algebra is a sequence of finite dimensional vector spaces ( P n , ± ) n ≥ 0 with an action of planar tangles . D 1 T ′ = S = D 2 Z T : P 3 , − ⊗ P 2 , + → P 3 , + Z S : P 0 → P 2 , + Z T ◦ 2 S = Z T ◦ 2 Z S Further conditions: P 0 = C , ∗ -structure, positivity, sphericality. Follows that there is δ ∈ { 2 cos( π/ n ) : n ≥ 3 } ∪ [2 , ∞ ] s.t. Z T ′ = δ · Z T Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 2 / 16

  11. The polynomial planar algebra P k , ± ⊂ C � X 1 , X ∗ 1 , . . . , X n , X ∗ n P k , + = span { X i 1 X ∗ j 1 · · · X i k X ∗ j k } P k , − = span { X ∗ i 1 X j 1 · · · X ∗ i k X j k } Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 3 / 16

  12. The polynomial planar algebra P k , ± ⊂ C � X 1 , X ∗ 1 , . . . , X n , X ∗ n P k , + = span { X i 1 X ∗ j 1 · · · X i k X ∗ j k } P k , − = span { X ∗ i 1 X j 1 · · · X ∗ i k X j k } T = Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 3 / 16

  13. The polynomial planar algebra P k , ± ⊂ C � X 1 , X ∗ 1 , . . . , X n , X ∗ n P k , + = span { X i 1 X ∗ j 1 · · · X i k X ∗ j k } P k , − = span { X ∗ i 1 X j 1 · · · X ∗ i k X j k } T = Z T ( X ∗ i 1 X j 1 X ∗ i 2 X j 2 X ∗ i 3 X j 3 ⊗ X k 1 X ∗ l 1 X k 2 X ∗ l 2 ) = Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 3 / 16

  14. The polynomial planar algebra P k , ± ⊂ C � X 1 , X ∗ 1 , . . . , X n , X ∗ n P k , + = span { X i 1 X ∗ j 1 · · · X i k X ∗ j k } P k , − = span { X ∗ i 1 X j 1 · · · X ∗ i k X j k } j 2 i 3 j 3 i 2 i 1 j 1 T = l 2 k 1 k 2 l 1 Z T ( X ∗ i 1 X j 1 X ∗ i 2 X j 2 X ∗ i 3 X j 3 ⊗ X k 1 X ∗ l 1 X k 2 X ∗ l 2 ) = Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 3 / 16

  15. The polynomial planar algebra P k , ± ⊂ C � X 1 , X ∗ 1 , . . . , X n , X ∗ n P k , + = span { X i 1 X ∗ j 1 · · · X i k X ∗ j k } P k , − = span { X ∗ i 1 X j 1 · · · X ∗ i k X j k } i 3 j 2 k 1 j 2 i 3 j 3 i 2 i 1 j 1 T = l 2 k 1 k 2 l 1 i 2 l 1 k 2 Z T ( X ∗ i 1 X j 1 X ∗ i 2 X j 2 X ∗ i 3 X j 3 ⊗ X k 1 X ∗ l 1 X k 2 X ∗ l 2 ) = δ j 3 i 1 δ j 1 l 2 X j 2 X ∗ i 3 X k 1 X ∗ l 1 X k 2 X ∗ i 2 Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 3 / 16

  16. The polynomial planar algebra P k , ± ⊂ C � X 1 , X ∗ 1 , . . . , X n , X ∗ n P k , + = span { X i 1 X ∗ j 1 · · · X i k X ∗ j k } P k , − = span { X ∗ i 1 X j 1 · · · X ∗ i k X j k } i 3 j 2 k 1 j 2 i 3 j 3 i 2 i 1 j 1 T = l 2 k 1 k 2 l 1 i 2 l 1 k 2 Z T ( X ∗ i 1 X j 1 X ∗ i 2 X j 2 X ∗ i 3 X j 3 ⊗ X k 1 X ∗ l 1 X k 2 X ∗ l 2 ) = δ j 3 i 1 δ j 1 l 2 X j 2 X ∗ i 3 X k 1 X ∗ l 1 X k 2 X ∗ i 2 Planar algebra of modulus δ = n . Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 3 / 16

  17. Planar algebras and subfactors Theorem (Jones ’99) The standard invariant of any finite-index inclusion of II 1 factors N ⊂ M has a planar algebra structure (with δ 2 = [ M : N ] ). Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 4 / 16

  18. Planar algebras and subfactors Theorem (Jones ’99) The standard invariant of any finite-index inclusion of II 1 factors N ⊂ M has a planar algebra structure (with δ 2 = [ M : N ] ). Theorem (Popa ’95) Any planar algebra ( λ -lattice) is the standard invariant of a finite-index inclusion of II 1 factors. Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 4 / 16

  19. Planar algebra subfactors Let P = ( P n , ± ) n ≥ 0 be a subfactor planar algebra. Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 5 / 16

  20. Planar algebra subfactors Let P = ( P n , ± ) n ≥ 0 be a subfactor planar algebra. Guionnet-Jones-Shlyakhtenko ’08,’09: Tower of graded algebras Gr 0 ( P ) ⊂ Gr 1 ( P ) ⊂ · · · . Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 5 / 16

  21. Planar algebra subfactors Let P = ( P n , ± ) n ≥ 0 be a subfactor planar algebra. Guionnet-Jones-Shlyakhtenko ’08,’09: Tower of graded algebras Gr 0 ( P ) ⊂ Gr 1 ( P ) ⊂ · · · . Voiculescu trace τ k : Gr k ( P ) → C . Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 5 / 16

  22. Planar algebra subfactors Let P = ( P n , ± ) n ≥ 0 be a subfactor planar algebra. Guionnet-Jones-Shlyakhtenko ’08 ,’09: Tower of graded algebras Gr 0 ( P ) ⊂ Gr 1 ( P ) ⊂ · · · . Voiculescu trace τ k : Gr k ( P ) → C . GNS completions give tower of II 1 factors M 0 ⊂ M 1 ⊂ · · · , whose planar algebra is P . (Diagrammatic proof of Popa’s reconstruction theorem). Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 5 / 16

  23. Planar algebra subfactors Let P = ( P n , ± ) n ≥ 0 be a subfactor planar algebra. Guionnet-Jones-Shlyakhtenko ’08, ’09 : Tower of graded algebras Gr 0 ( P ) ⊂ Gr 1 ( P ) ⊂ · · · . Voiculescu trace τ k : Gr k ( P ) → C . GNS completions give tower of II 1 factors M 0 ⊂ M 1 ⊂ · · · , whose planar algebra is P . (Diagrammatic proof of Popa’s reconstruction theorem). If P is finite-depth then M k ≃ L ( F r k ), r k = 1 + 2 I δ − 2 k ( δ − 1) , where δ 2 = [ M 1 : M 0 ] and I is the global index . Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 5 / 16

  24. Planar algebra subfactors Let P = ( P n , ± ) n ≥ 0 be a subfactor planar algebra. Guionnet-Jones-Shlyakhtenko ’08,’09: Tower of graded algebras Gr 0 ( P ) ⊂ Gr 1 ( P ) ⊂ · · · . Voiculescu trace τ k : Gr k ( P ) → C . GNS completions give tower of II 1 factors M 0 ⊂ M 1 ⊂ · · · , whose planar algebra is P . (Diagrammatic proof of Popa’s reconstruction theorem). If P is finite-depth then M k ≃ L ( F r k ), r k = 1 + 2 I δ − 2 k ( δ − 1) , where δ 2 = [ M 1 : M 0 ] and I is the global index . Relies on work of K. Dykema on amalgamated free products. Stephen Curran (UCLA) Symmetric enveloping algebra May 26, 2011 5 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend