on the m obius function of semigroup posets
play

On the M obius function of semigroup posets J.L. Ram rez Alfons n - PowerPoint PPT Presentation

Basics notions on Posets and M obius function General methods Explicit formulas Some general application On the M obius function of semigroup posets J.L. Ram rez Alfons n I3M, Universit e Montpellier 2 INdAM meeting:


  1. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application On the M¨ obius function of semigroup posets J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 INdAM meeting: International meeting on numerical semigroups Cortona, Italy, September 10, 2014 Joint work : J.Chappelon, I. Garc´ ıa Marco, L.P. Montejano. J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  2. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application Basics on posets Let ( P , ≤ ) be a locally finite poset , i.e, the set P is partially ordered by ≤ , and for every a , b ∈ P the set { c ∈ P | a ≤ c ≤ b } is finite. J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  3. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application Basics on posets Let ( P , ≤ ) be a locally finite poset , i.e, the set P is partially ordered by ≤ , and for every a , b ∈ P the set { c ∈ P | a ≤ c ≤ b } is finite. A chain of length l ≥ 0 between a , b ∈ P is { a = a 0 < a 1 < · · · < a l = b } ⊂ P . We denote by c l ( a , b ) the number of chains of length l between a and b . J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  4. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application Basics on posets Let ( P , ≤ ) be a locally finite poset , i.e, the set P is partially ordered by ≤ , and for every a , b ∈ P the set { c ∈ P | a ≤ c ≤ b } is finite. A chain of length l ≥ 0 between a , b ∈ P is { a = a 0 < a 1 < · · · < a l = b } ⊂ P . We denote by c l ( a , b ) the number of chains of length l between a and b . The M¨ obius function µ P is the function → Z µ P : P × P − � ( − 1) l c l ( a , b ) . µ P ( a , b ) = l ≥ 0 J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  5. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application Consider the poset ( N , | ) of nonnegative integers ordered by divisibility , i.e., a | b ⇐ ⇒ a divides b . J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  6. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application Consider the poset ( N , | ) of nonnegative integers ordered by divisibility , i.e., a | b ⇐ ⇒ a divides b . Let us compute µ N (2 , 36). J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  7. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application Consider the poset ( N , | ) of nonnegative integers ordered by divisibility , i.e., a | b ⇐ ⇒ a divides b . Let us compute µ N (2 , 36). We observe that { c ∈ N ; 2 | c | 36 } = { 2 , 4 , 6 , 12 , 18 , 36 } . J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  8. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application Consider the poset ( N , | ) of nonnegative integers ordered by divisibility , i.e., a | b ⇐ ⇒ a divides b . Let us compute µ N (2 , 36). We observe that { c ∈ N ; 2 | c | 36 } = { 2 , 4 , 6 , 12 , 18 , 36 } . Chains of 36 length 1 → { 2 , 36 }  { 2 , 4 , 36 }   { 2 , 6 , 36 }  12 18 length 2 { 2 , 12 , 36 }   { 2 , 18 , 36 }  4 6  { 2 , 4 , 12 , 36 }  length 3 { 2 , 6 , 12 , 26 } { 2 , 6 , 18 , 36 }  2 J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  9. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application Consider the poset ( N , | ) of nonnegative integers ordered by divisibility , i.e., a | b ⇐ ⇒ a divides b . Let us compute µ N (2 , 36). We observe that { c ∈ N ; 2 | c | 36 } = { 2 , 4 , 6 , 12 , 18 , 36 } . Chains of 36 length 1 → { 2 , 36 }  { 2 , 4 , 36 }   { 2 , 6 , 36 }  12 18 length 2 { 2 , 12 , 36 }   { 2 , 18 , 36 }  4 6  { 2 , 4 , 12 , 36 }  length 3 { 2 , 6 , 12 , 26 } { 2 , 6 , 18 , 36 }  2 Thus, µ N (2 , 36) = − c 1 (2 , 36) + c 2 (2 , 36) − c 3 (2 , 36) = 1 − 4 + 3 = 0 . J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  10. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application M¨ obius classical arithmetic function Given n ∈ N the M¨ obius arithmetic function µ ( n ) is defined as  1 if n = 1 ,   ( − 1) k if n = p 1 · · · p k with p i distinct primes,  µ ( n ) = 0 otherwise (i.e., n admits at least one square   factor bigger than one).  J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  11. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application M¨ obius classical arithmetic function Given n ∈ N the M¨ obius arithmetic function µ ( n ) is defined as  1 if n = 1 ,   ( − 1) k if n = p 1 · · · p k with p i distinct primes,  µ ( n ) = 0 otherwise (i.e., n admits at least one square   factor bigger than one).  The inverse of the ζ Riemann function, s ∈ C , Re ( s ) > 0 � − 1 � + ∞ + ∞ 1 µ ( n ) ζ − 1 ( s ) = � � (1 − p − s ) = � = n s n s n =1 p − primes n =1 J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  12. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application There are impressive results using µ , for instance, for an integer n Pr( n do not contain a square factor) = 6 π 2 J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  13. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application There are impressive results using µ , for instance, for an integer n Pr( n do not contain a square factor) = 6 π 2 Consider the poset ( N , | ). J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  14. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application There are impressive results using µ , for instance, for an integer n Pr( n do not contain a square factor) = 6 π 2 Consider the poset ( N , | ). We have that if a | b then µ N ( a , b ) = µ ( b / a ) for all a , b ∈ N J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  15. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application There are impressive results using µ , for instance, for an integer n Pr( n do not contain a square factor) = 6 π 2 Consider the poset ( N , | ). We have that if a | b then µ N ( a , b ) = µ ( b / a ) for all a , b ∈ N  ( − 1) r if b / a is a product of r distinct primes  µ N ( a , b ) = 0 otherwise  J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  16. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application There are impressive results using µ , for instance, for an integer n Pr( n do not contain a square factor) = 6 π 2 Consider the poset ( N , | ). We have that if a | b then µ N ( a , b ) = µ ( b / a ) for all a , b ∈ N  ( − 1) r if b / a is a product of r distinct primes  µ N ( a , b ) = 0 otherwise  Example: µ N (2 , 36) = 0 because 36 / 2 = 18 = 2 · 3 2 J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  17. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application M¨ obius inversion formula Theorem (Rota) Let ( P , ≤ ) be a poset, let p be an element of P and consider f : P → R a function such that f ( x ) = 0 for all x � p. Suppose that � g ( x ) = f ( y ) for all x ∈ P . y ≤ x Then, � f ( x ) = g ( y ) µ P ( y , x ) for all x ∈ P . y ≤ x J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

  18. Basics notions on Posets and M¨ obius function General methods Explicit formulas Some general application Compute the Euler function φ ( n ) (the number of integers smaller or equal to n and coprime with n ) µ ( d ) � φ ( n ) = n d d | n J.L. Ram´ ırez Alfons´ ın I3M, Universit´ e Montpellier 2 On the M¨ obius function of semigroup posets

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend