on the hilbert function of one dimensional semigroup rings
play

On the Hilbert function of one-dimensional semigroup rings Michela - PowerPoint PPT Presentation

On the Hilbert function of one-dimensional semigroup rings Michela Di Marca Joint work with Marco DAnna and Vincenzo Micale Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 1 / 28 Introduction to the problem


  1. On the Hilbert function of one-dimensional semigroup rings Michela Di Marca Joint work with Marco D’Anna and Vincenzo Micale Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 1 / 28

  2. Introduction to the problem Hilbert function Indice Introduction to the problem 1 Hilbert function Monomial curves Questions Some definitions and results 2 Correspondences Apéry-sets and numerical invariants of S Our results 3 Characterization of the skipping elements The main theorem Applications Future goals Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 2 / 28

  3. Introduction to the problem Hilbert function Let ( R , m ) be a Noetherian local ring with | R \ m | = ∞ . gr ( R ) = ⊕ i ≥ 0 m i / m i + 1 is the associated graded ring of R . Definition The Hilbert function of R is H R ( i ) = dim k m i / m i + 1 , H R : N → N , where k = R / m . Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 3 / 28

  4. Introduction to the problem Monomial curves Indice Introduction to the problem 1 Hilbert function Monomial curves Questions Some definitions and results 2 Correspondences Apéry-sets and numerical invariants of S Our results 3 Characterization of the skipping elements The main theorem Applications Future goals Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 4 / 28

  5. Introduction to the problem Monomial curves Definition C ⊆ A n k is an algebraic curve if ∃ I ( C ) ⊆ k [ x 1 , . . . , x n ] such that C = V ( I ( C )) ; k [ x 1 ,..., x n ] dim k = 1 . I ( C ) Suppose there are some numbers g 1 , . . . , g n ∈ N with gcd ( g 1 , . . . , g n ) = 1 , and an homomorphism ψ : k [ x 1 , . . . , x n ] → k [ t ] : x 1 �→ t g 1 . . . x n �→ t g n , such that I ( C ) = ker ψ , then C is called monomial curve, denoted by C = C ( g 1 , . . . , g n ) . Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 5 / 28

  6. Introduction to the problem Monomial curves Let C = C ( g 1 , . . . , g n ) be a monomial curve determined by the homomorphism ψ . Then S = � g 1 , . . . , g n � is a numerical semigroup; 1 By extending ψ to ˆ ψ : k [[ x 1 , . . . , x n ]] → k [[ t ]] , we get 2 Im ( ˆ ψ ) = k [[ t S ]] , the semigroup ring associated to S ; k [[ t S ]] ∼ = k [[ x 1 ,..., x n ]] is the completion of the coordinate ring of C ; 3 I ( C ) e gr ( R ) ∼ = k [ x 1 ,..., x n ] is the coordinate ring of the tangent cone of C at 0. 4 I ( C ) ∗ Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 6 / 28

  7. Introduction to the problem Monomial curves Example The cusp curve ψ : k [ x 1 , x 2 ] → k [ t ] x 1 �→ t 2 x 2 �→ t 3 S = � 2 , 3 � , I ( C ) = ( x 3 1 − x 2 2 ) gr ( R ) ∼ = k [ x 1 , x 2 ] ( x 2 2 ) Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 7 / 28

  8. Introduction to the problem Questions Indice Introduction to the problem 1 Hilbert function Monomial curves Questions Some definitions and results 2 Correspondences Apéry-sets and numerical invariants of S Our results 3 Characterization of the skipping elements The main theorem Applications Future goals Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 8 / 28

  9. Introduction to the problem Questions Question (1) [Rossi’s conjecture] Is the Hilbert function of one-dimensional Gorenstein local rings non-decreasing? Answer: In general the problem is open. Question (2) Is the answer to the previous question affermative for rings associated to monomial curves? Partial answers: If gr ( R ) is Cohen-Macaulay, yes (A. Garcìa). Yes for some semigroups obtained by gluing (Arslan-Mete-Sahin, Jafari-Zarzuela Armengou). Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 9 / 28

  10. Introduction to the problem Questions Question (3) Is the Hilbert function of rings associated to monomial curves non-decreasing for small embedding dimensions (e.g. edim = 3 , 4 , 5 )? Answer: edim = 3: Yes, more generally it is true for one-dimensional equicharacteristic rings (J. Elìas). edim = 4: Yes if the associated graded ring is Buchsbaum (Cortadellas Benitez-Jafari-Zarzuela Armengou). Open in general. edim = 5 , . . . , 9: The problem is totally open, the first counterexample is for edim = 10. Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 10 / 28

  11. Some definitions and results Correspondences Indice Introduction to the problem 1 Hilbert function Monomial curves Questions Some definitions and results 2 Correspondences Apéry-sets and numerical invariants of S Our results 3 Characterization of the skipping elements The main theorem Applications Future goals Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 11 / 28

  12. Some definitions and results Correspondences v : k (( t )) → Z ∪ { 0 } � ∞ h = i r h t h , r h � = 0 �→ i Semigroup rings Semigroups R = k [[ t S ]] = k [[ t g 1 , . . . , t g n ]] → S = � g 1 , . . . , g n � m = ( t g 1 , . . . , t g n ) maximal ideal of R → M = S \ { 0 } maximal ideal of S m i → iM dim k m i / m i + 1 → | iM \ ( i + 1 ) M | R ′ = ∪ i ( m i : Q ( R ) m i ) blow-up of R S ′ = ∪ i ( iM − Z iM ) blow-up of S → R Gorenstein → S symmetric H R non-decreasing ⇔ | iM \ ( i + 1 ) M | ≤ | ( i + 1 ) M \ ( i + 2 ) M | , ∀ i Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 12 / 28

  13. Some definitions and results Apéry-sets and numerical invariants of S Indice Introduction to the problem 1 Hilbert function Monomial curves Questions Some definitions and results 2 Correspondences Apéry-sets and numerical invariants of S Our results 3 Characterization of the skipping elements The main theorem Applications Future goals Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 13 / 28

  14. Some definitions and results Apéry-sets and numerical invariants of S Let S = � g 1 , . . . , g n � , where g 1 < . . . < g n are the generators of the minimal system of generators. Definition The Apéry-set of S is the set Ap ( S ) = { ω 0 , ω 1 , . . . , ω g 1 − 1 } , where ω i = min { s ∈ S | s ≡ i ( mod g 1 ) } . Similarly, one can define the Apéry-set for S ′ = � g 1 , g 2 − g 1 , . . . , g n − g 1 � Ap ( S ′ ) = { ω ′ 0 , ω ′ 1 , . . . , ω ′ g 1 − 1 } , i = min { s ′ ∈ S ′ | s ′ ≡ i ( mod where ω ′ g 1 ) } . Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 14 / 28

  15. Some definitions and results Apéry-sets and numerical invariants of S Definition a i = the positive number such that ω i = ω ′ i + a i g 1 , i = 0 , 1 , . . . , g 1 − 1 b i = max { l | ω i ∈ lM } , i = 0 , 1 , . . . , g 1 − 1 In general a i ≥ b i for every i . Example R = Q [[ t 8 , t 9 , t 12 , t 13 , t 19 ]] S = � 8 , 9 , 12 , 13 , 19 � = { 0 , 8 , 9 , 12 , 13 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 24 , →} M \ 2 M = { 8 , 9 , 12 , 13 , 19 } 2 M \ 3 M = { 16 , 17 , 18 , 20 , 21 , 22 } 3 M \ 4 M = { 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 } 4 M \ 5 M = { 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 } reduction number = 4 Ap ( S ) = { 0 , 9 , 18 , 19 , 12 , 13 , 22 , 31 } Ap ( S ′ ) = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } a 0 = 0 , a 1 = 1 , a 2 = 2 , a 3 = 2 , a 4 = 1 , a 5 = 1 , a 6 = 2 , a 7 = 3 b 0 = 0 , b 1 = 1 , b 2 = 2 , b 3 = 1 , b 4 = 1 , b 5 = 1 , b 6 = 2 , b 7 = 3 Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 15 / 28

  16. Some definitions and results Apéry-sets and numerical invariants of S Let R = k [[ t S ]] , where S = � g 1 , . . . , g n � , g 1 < g 2 < . . . < g n . Proposition (A. Garcìa) gr ( R ) is Cohen-Macaulay if and only if t g 1 is a regular element. Proposition (Barucci-Fröberg) gr ( R ) is Cohen-Macaulay if and only if a i = b i , for every i. Definition We call order of an element s ∈ S the integer i such that s ∈ iM \ ( i + 1 ) M, denoted by ord ( s ) ; we also say that s is on the i-th level. An element s skips the level when adding g 1 if ord ( s + g 1 ) > ord ( s ) + 1 . t g 1 is a zerodivisor in R ⇔ ∃ s ∈ S that skips the level when adding g 1 . Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 16 / 28

  17. Some definitions and results Apéry-sets and numerical invariants of S Example S = � 8 , 9 , 12 , 13 , 19 � M \ 2 M = { 8 , 9 , 12 , 13 , 19 } 2 M \ 3 M = { 16 , 17 , 18 , 20 , 21 , 22 } 3 M \ 4 M = { 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 } 4 M \ 5 M = { 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 } reduction number = 4 19 skips the order when adding 8 ; 18 , 22 , 27 , 31 do not come from the previous level. Definition D i = { s ∈ ( i − 1 ) M \ iM : s + g 1 ∈ ( i + 1 ) M } , i ≥ 2 . C i = { s ∈ iM \ ( i + 1 ) M : s − g 1 / ∈ ( i − 1 ) M \ iM } , i ≥ 1 . H R is non-decreasing ⇔ | D i | ≤ | C i | , ∀ i ∈ { 2 , . . . , r } Example 19 ∈ D 2 ; 18 , 22 ∈ C 2 , 27 , 31 ∈ C 3 . Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 17 / 28

  18. Our results Characterization of the skipping elements Indice Introduction to the problem 1 Hilbert function Monomial curves Questions Some definitions and results 2 Correspondences Apéry-sets and numerical invariants of S Our results 3 Characterization of the skipping elements The main theorem Applications Future goals Michela Di Marca On the Hilbert function of one-dimensional semigroup rings 18 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend