draft
play

Draft EE 8235: Lectures 10 & 11 1 Lectures 10 & 11: - PowerPoint PPT Presentation

Draft EE 8235: Lectures 10 & 11 1 Lectures 10 & 11: Semigroup Theory Want to generalize matrix exponential to infinite dimensional setting Strongly continuous ( C 0 ) semigroup Extension of matrix exponential Infinitesimal


  1. Draft EE 8235: Lectures 10 & 11 1 Lectures 10 & 11: Semigroup Theory • Want to generalize matrix exponential to infinite dimensional setting • Strongly continuous ( C 0 ) semigroup ⋆ Extension of matrix exponential • Infinitesimal generator of a C 0 -semigroup • Examples and conditions

  2. Draft EE 8235: Lectures 10 & 11 2 Solution to abstract evolution equation • Abstract evolution equation on a Hilbert space H d ψ ( t ) = A ψ ( t ) , ψ (0) ∈ H d t Dilemma: how to define ” e A t ”? Finite dimensional case: ∞ ( M t ) k e M t = � M ∈ C n × n ⇒ k ! k = 1

  3. Draft EE 8235: Lectures 10 & 11 3 d ψ ( t ) = A ψ ( t ) , ψ (0) ∈ H d t • Assume: ⋆ For each ψ (0) ∈ H , there is a unique solution ψ ( t ) ⋆ There is a well defined mapping T ( t ) : H − → H ψ ( t ) = T ( t ) ψ (0) T ( t ) - time-parameterized family of linear operators on H ⋆ Solution varies continuously with initial state T ( t ) : a bounded operator (on H ) � T ( t ) f � � T ( t ) � = < ∞ sup � f � f ∈ H

  4. Draft EE 8235: Lectures 10 & 11 4 Strongly continuous semigroups • Properties of T ( t ) : ψ ( t ) = T ( t ) ψ (0) • Initial condition: T (0) = I • Semigroup property: for all t 1 , t 2 ≥ 0 T ( t 1 + t 2 ) = T ( t 2 ) T ( t 1 ) = T ( t 1 ) T ( t 2 ) , T( ) t 1 T( ) t 2 t 1 t 1 + t 2 T( ) t 1 + t 2 • Strong continuity: t → 0 + � T ( t ) ψ (0) − ψ (0) � = 0 , for all ψ (0) ∈ H lim a weaker condition than: � ( T ( t ) − I ) f � t → 0 + � T ( t ) − I � = lim t → 0 + sup lim = 0 � f � f ∈ H

  5. Draft EE 8235: Lectures 10 & 11 5 Examples • Linear transport equation  d ψ ( t ) ± c d � = d x ψ ( t ) φ t ( x, t ) = ± c φ x ( x, t )   d t ⇒ f ( x ) , x ∈ R φ ( x, 0) =  ψ (0) = f ∈ L 2 ( −∞ , ∞ )  • Consider: φ ( x, t ) = [ T ( t ) f ] ( x ) = f ( x ± ct ) In class: T ( t ) defines a C 0 -semigroup on L 2 ( −∞ , ∞ ) • The infinitesimal generator of a C 0 -semigroup T ( t ) on H T ( t ) f − f A f = lim t t → 0 + � � T ( t ) f − f D ( A ) = f ∈ H ; lim exists t t → 0 +

  6. Draft EE 8235: Lectures 10 & 11 6 • A couple of additional notes ⋆ Change of coordinates: � � φ t ( x, t ) = ± c φ x ( x, t ) φ t ( z, t ) = 0 z = x ± ct − − − − − − → φ ( x, 0) = f ( x ) , x ∈ R φ ( z, 0) = f ( z ) , z ∈ R ⋆ Reaction-convection equation: � φ t ( x, t ) = ± c φ x ( x, t ) + a φ ( x, t ) φ ( x, 0) = f ( x ) , x ∈ R C 0 -semigroup: φ ( x, t ) = [ T ( t ) f ] ( x ) = e a t f ( x ± ct ) a > 0 exponentially growing traveling wave a < 0 exponentially decaying traveling wave

  7. Draft EE 8235: Lectures 10 & 11 7 Infinite number of decoupled scalar states • Abstract evolution equation on ℓ 2 ( N )       ψ 1 ( t ) ψ 1 ( t ) a 1 d d ψ ( t ) ψ 2 ( t ) ψ 2 ( t ) a 2  = ⇔ = A ψ ( t )       d t d t . .      ... . . . . Solution e a 1 t       ψ 1 ( t ) ψ 1 (0) e a 2 t ψ 2 ( t ) ψ 2 (0) ψ ( t ) =  =  = T ( t ) ψ (0)       . .     ... . . . . • In class: conditions for well-posedness on ℓ 2 ( N )

  8. Draft EE 8235: Lectures 10 & 11 8 • Half-plane condition: Re ( a n ) < M < ∞ sup n Im Im x x x x x x x x x x x x x x x Re Re x x x x M x x x x x x x x x x x x x x x x x (a) (b) Same condition for: ∞ e a n t v n � v n , f � � T ( t ) f = n = 1

  9. Draft EE 8235: Lectures 10 & 11 9 Continuum of decoupled scalar states ˙ ψ ( κ, t ) = a ( κ ) ψ ( κ, t ) , κ ∈ R Solution ψ ( κ, t ) = [ T ( t ) ψ ( · , 0)] ( κ ) = e a ( κ ) t ψ ( κ, 0) • Homework: conditions for well-posedness on L 2 ( −∞ , ∞ ) Half-plane condition: sup Re ( a ( κ )) < M < ∞ κ ∈ R

  10. Draft EE 8235: Lectures 10 & 11 10 Hille-Yosida Theorem closed, densely defined operator A on H : A - infinitesimal generator of a C 0 -semigroup with � T ( t ) � ≤ M e ω t � M every real λ > ω is in ρ ( A ) and � ( λI − A ) − n � ≤ ( λ − ω ) n for all n ≥ 1 • Difficult to check • Important consequence: a method for computing T ( t ) � − N � t T ( t ) = lim I − N A N → ∞ Implicit Euler: d ψ ( t ) ψ ( t + ∆ t ) − ψ ( t ) = A ψ ( t ) ⇒ = A ψ ( t + ∆ t ) d t ∆ t

  11. Draft EE 8235: Lectures 10 & 11 11 Lumer-Phillips Theorem closed, densely defined operator A on H : Re ( � ψ, A ψ � ) ≤ ω � ψ � 2 for all ψ ∈ D ( A ) ψ, A † ψ ≤ ω � ψ � 2 �� �� for all ψ ∈ D ( A † ) Re ⇓ A - infinitesimal generator of a C 0 -semigroup with � T ( t ) � ≤ e ω t • Examples:  � d f � [ A f ] ( x ) = ( x )    d x  � � f ∈ L 2 [ − 1 , 1] , d f  D ( A ) d x ∈ L 2 [ − 1 , 1] , f (1) = 0 =     � d 2 f � [ A f ] ( x ) = ( x )   d x 2   f ∈ L 2 [ − 1 , 1] , d 2 f � �  D ( A ) d x 2 ∈ L 2 [ − 1 , 1] , f ( ± 1) = 0 =   

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend