quantum markov semigroups detailed balance
play

QUANTUM MARKOV SEMIGROUPS & DETAILED BALANCE Franco Fagnola - PowerPoint PPT Presentation

Classical Detailed Balance Quantum Detailed Balance QUANTUM MARKOV SEMIGROUPS & DETAILED BALANCE Franco Fagnola Politecnico di Milano (joint work with V. Umanit` a and R. Rebolledo) Quantissima in the Serenissima III August 20, 2019


  1. Classical Detailed Balance Quantum Detailed Balance QUANTUM MARKOV SEMIGROUPS & DETAILED BALANCE Franco Fagnola Politecnico di Milano (joint work with V. Umanit` a and R. Rebolledo) Quantissima in the Serenissima III August 20, 2019 QMS & DETAILED BALANCE

  2. Classical Detailed Balance Quantum Detailed Balance 1 Classical Detailed Balance 2 Quantum Detailed Balance QMS & DETAILED BALANCE

  3. Classical Detailed Balance Quantum Detailed Balance Classical Detailed Balance (CDB) T = ( T t ) t ≥ 0 Markov semigroup on L ∞ ( E , E , µ ) π invariant probability density � � ( T t f ) π d µ = f π d µ ∀ t , f E E Definition Detailed balance ( reversibility ) for ( T , π ) � � ∀ t ≥ 0 , f , g ∈ L ∞ ( E , E , µ ) . g ( T t f ) π d µ = ( T t g ) f π d µ E E QMS & DETAILED BALANCE

  4. Classical Detailed Balance Quantum Detailed Balance Classical Detailed Balance If � f ( y ) p t ( x , y ) µ ( d y ) ( T t f )( x ) = E classical detailed balance is equivalent to π ( x ) p t ( x , y ) = π ( y ) p t ( y , x ) QMS & DETAILED BALANCE

  5. Classical Detailed Balance Quantum Detailed Balance Quantum Detailed Balance (QDB): definitions h complex separable Hilbert space, T = ( T t ) t ≥ 0 semigroup of (completely) positive unital linear maps on B (h), ω invariant state Definition Agarwal Z. Physik 258 (1973): principle of microreversibility or detailed balance for ( T , ω ) ω ( T t ( x ) y ) = ε x ε y ω ( T t ( y ) x ) , with ε x , ε y parities of x , y under time reversal. QMS & DETAILED BALANCE

  6. Classical Detailed Balance Quantum Detailed Balance QDB: definitions Typical parity. θ : h → h antiunitary, e.g. conjugation w.r. basis ( e n ) t oan ≥ 0 � θ u = u n e n n ≥ 0 x is even / odd if θ x ∗ θ = x , θ x ∗ θ = − x , ε x = 1 / ε x = − 1 ω ( T t ( x ) y ) = ε x ε y ω ( T t ( y ) x ) ω ( T t ( θ y ∗ θ ) θ x ∗ θ ) ⇔ = QMS & DETAILED BALANCE

  7. Classical Detailed Balance Quantum Detailed Balance Parity: example h = ℓ 2 ( N ) = Γ( C ), c.o.n. basis ( e n ) n ≥ 0 T transpose θ x ∗ θ = x T annihilation, creation, number √ a e n = √ n e n − 1 , a † e n = N = a † a n + 1 e n +1 , position and momentum � � √ � � √ a † + a a † − a N = ( p 2 + q 2 − 1 l ) / 2 q = / 2 p = i / 2 even odd even QMS & DETAILED BALANCE

  8. Classical Detailed Balance Quantum Detailed Balance Quantum Markov (dynamical)semigroup ( T t ) t ≥ 0 norm-continuous semigroup of unital CP maps on B (h), L generator Theorem (Gorini, Kossakowski, Sudarshan, Lindblad) GKSL � L ( x ) = G ∗ x + Φ ( x ) + xG , L ∗ Φ ( x ) := ℓ xL ℓ ℓ G ∗ + � ℓ L ∗ 1. G , L ℓ ∈ B (h) , ℓ L ℓ + G = 0 , 2. � ℓ L ∗ ℓ L ℓ strongly convergent. G , L ℓ of a GKSL form are not unique! QMS & DETAILED BALANCE

  9. Classical Detailed Balance Quantum Detailed Balance GKSL generator � − 1 L ∗ H = H ∗ G := ℓ L ℓ − iH , 2 ℓ L ( x ) = L 0 ( x ) + i [ H , x ] QMS & DETAILED BALANCE

  10. Classical Detailed Balance Quantum Detailed Balance GKSL generator � − 1 L ∗ H = H ∗ G := ℓ L ℓ − iH , 2 ℓ L ( x ) = L 0 ( x ) + i [ H , x ] Fix ρ , choose L ℓ with tr ( ρ L ℓ ) = 0 and 1 l , L 1 , L 2 , . . . linearly independent (min) If G ′ , L ′ ℓ also satisfy tr ( ρ L ′ ℓ ) = 0, (min) and � � ℓ xL ℓ + xG = L ( x ) = G ′∗ x + ℓ L ′∗ G ∗ x + ℓ L ∗ ℓ xL ′ ℓ + xG ′ QMS & DETAILED BALANCE

  11. Classical Detailed Balance Quantum Detailed Balance GKSL generator ⇒ ∃ a unitary ( u jk ) s.t. � H ′ = H + c 1 L ′ j = u jk L k , l , c ∈ R . k ⇒ unique L 0 and unique H (up to c ) in L ( a ) = L 0 ( a ) + i [ H , a ] . QMS & DETAILED BALANCE

  12. Classical Detailed Balance Quantum Detailed Balance Alicki QDB T QMS on B (h) generated by L = L 0 + i [ H , · ], Definition L satisfies a quantum detailed balance condition w.r.t. a stationary state ρ if tr ( ρ L 0 ( x ) y ) = tr ( ρ x L 0 ( y )) [ H , ρ ] = 0 , for all x , y ∈ B (h). QMS & DETAILED BALANCE

  13. Classical Detailed Balance Quantum Detailed Balance Alicki QDB T QMS on B (h) generated by L = L 0 + i [ H , · ], Definition L satisfies a quantum detailed balance condition w.r.t. a stationary state ρ if tr ( ρ L 0 ( x ) y ) = tr ( ρ x L 0 ( y )) [ H , ρ ] = 0 , for all x , y ∈ B (h). � � � ρ x � tr ( ρ ( x ) L ( y )) = tr L := L 0 − i [ H , · ] ⇔ L ( y ) T t := e t � i.e., defining, T t := e t L , � L � � ρ x � tr ( ρ T t ( x ) y ) = tr T t ( y ) QMS & DETAILED BALANCE

  14. Classical Detailed Balance Quantum Detailed Balance Agarwal QDB − θ w.r.t. ρ = ρ T � ρ T t ( y T ) x T � � ρ x T t ( y T ) T � tr ( ρ T t ( x ) y ) = tr = tr Alicki QDB � � ρ x � tr ( ρ T t ( x ) y ) tr = T t ( y ) L ( x ) − � L ( x ) = − 2 i [ H , x ] Theorem � � � � T = − i [ H , x ] i [ H , x T ] If θ H θ = H ⇒ then L ( x ) = L ( x T ) T ⇔ L 0 ( x ) = L 0 ( x T ) T � QDB- θ = QDB ⇔ QMS & DETAILED BALANCE

  15. Classical Detailed Balance Quantum Detailed Balance Duality Both Agarwal QDB − θ and Alicki QDB imply � � ρ x � tr ( ρ T t ( x ) y ) = tr T t ( y ) � T ∗ t ( y ρ ) ρ − 1 T t ( y ) = and ( � T t ) t ≥ 0 semigroup of Completely Positive maps QMS & DETAILED BALANCE

  16. Classical Detailed Balance Quantum Detailed Balance Duality Both Agarwal QDB − θ and Alicki QDB imply � � ρ x � tr ( ρ T t ( x ) y ) = tr T t ( y ) � T ∗ t ( y ρ ) ρ − 1 T t ( y ) = and ( � T t ) t ≥ 0 semigroup of Completely Positive maps T t is a ∗ map, i.e. � T t ( y ) ∗ if and only if � T t ( y ∗ ) = � ρ i t a ρ − i t σ t ( a ) := T t ◦ σ − i = σ − i ◦ T t QMS & DETAILED BALANCE

  17. Classical Detailed Balance Quantum Detailed Balance Other dualities 0 ≤ s ≤ 1 � � � � ρ s x ρ 1 − s � ρ s T t ( x ) ρ 1 − s y tr tr = T t ( y ) If s = 1 / 2 then ( � T t ) t ≥ 0 semigroup of CP maps QMS & DETAILED BALANCE

  18. Classical Detailed Balance Quantum Detailed Balance Other dualities 0 ≤ s ≤ 1 � � � � ρ s x ρ 1 − s � ρ s T t ( x ) ρ 1 − s y tr tr = T t ( y ) If s = 1 / 2 then ( � T t ) t ≥ 0 semigroup of CP maps If s ∈ [0 , 1] − { 1 / 2 } Theorem (Majewski-Streater, J Phys A 1988) � T is a QMS if and only if each � T t is a ∗ -map. In this case T t ◦ σ z = σ z ◦ T t ( | z | ≤ 1 / 2 ) and duals of T for s ∈ [0 , 1] coincide. QMS & DETAILED BALANCE

  19. Classical Detailed Balance Quantum Detailed Balance Standard QDB, no θ Theorem A generator L satisfies SQDB L − � L = 2 i [ K , · ] iff ∃ special representation of L by H , L ℓ s.t. � ρ 1 / 2 L ∗ u ℓ k L k ρ 1 / 2 ℓ = ( ♦ ) k for all ℓ , for some unitary ( u ℓ k ) symmetric i.e. u ℓ k = u k ℓ . Rem. ρ invariant + ( ♦ ) ⇒ condition on G : G ρ 1 / 2 − ρ 1 / 2 G ∗ = i (2 K + c ) ρ 1 / 2 . � � � � ρ L ∗ ρ 1 / 2 L ∗ j ρ 1 / 2 L ∗ Moreover, putting C jk := tr , B jk := tr j L k . k SQDB holds iff � � CB = BC T C − 1 B with u jk = jk QMS & DETAILED BALANCE

  20. Classical Detailed Balance Quantum Detailed Balance Standard QDB- θ Theorem L satisfies SQDB- θ � � � � ρ 1 / 2 x ρ 1 / 2 L ( y ) ρ 1 / 2 Θ( L (Θ( x )) ρ 1 / 2 y tr = tr iff there exists a special GKSL representation of L by G , L ℓ s.t. G ρ 1 / 2 + i r ρ 1 / 2 ρ 1 / 2 θ G ∗ θ = r ∈ R � ρ 1 / 2 θ L ∗ u ℓ k L k ρ 1 / 2 ℓ θ = k for all ℓ , for some unitary ( u ℓ k ) self-adjoint. � � � � ρ 1 / 2 L ∗ j ρ 1 / 2 θ L ∗ Moreover, putting C jk := tr ρ L ∗ , R jk := tr j L k k θ SQDB- θ holds iff � � C − 1 R CR = RC with u jk = jk QMS & DETAILED BALANCE

  21. Classical Detailed Balance Quantum Detailed Balance The end Thank you! QMS & DETAILED BALANCE

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend