posets sheaves and their derived equivalences
play

Posets, sheaves, and their derived equivalences Sefi Ladkani - PowerPoint PPT Presentation

Posets, sheaves, and their derived equivalences Posets, sheaves, and their derived equivalences Sefi Ladkani Einstein Institute of Mathematics The Hebrew University of Jerusalem http://www.ma.huji.ac.il/~sefil/ 1 Posets, sheaves, and their


  1. Posets, sheaves, and their derived equivalences Posets, sheaves, and their derived equivalences Sefi Ladkani Einstein Institute of Mathematics The Hebrew University of Jerusalem http://www.ma.huji.ac.il/~sefil/ 1

  2. Posets, sheaves, and their derived equivalences Posets, diagrams and sheaves X – poset (finite partially ordered set) A – abelian category A X – the category of diagrams over X with values in A , or functors F : X → A consisting of: • An object F x of A for each x ∈ X . • A morphism r xx ′ ∈ Hom A ( F x , F x ′ ) for each x ≤ x ′ . such that r xx ′′ = r x ′ x ′′ r xx ′ for all x ≤ x ′ ≤ x ′′ (commutativity). U ⊆ X is open if x ∈ U , x ≤ x ′ ⇒ x ′ ∈ U Natural topology on X : Diagrams can be identified with sheaves over X with values in A . 2

  3. Posets, sheaves, and their derived equivalences Universal derived equivalence Two posets X and Y are universally derived equivalent ( X u ∼ Y ) if D b ( A X ) ≃ D b ( A Y ) for any abelian category A . Fix a field k , and specialize: mod k – the category of finite dimensional vector spaces over k . (mod k ) X can be identified with the category of finitely generated right modules over the incidence algebra of X over k . X and Y are derived equivalent ( X ∼ Y ) if D b (mod kX ) ≃ D b (mod kY ) 3

  4. Posets, sheaves, and their derived equivalences Constructions of derived equivalent posets Common theme: structured reversal of order relations. • Generalized reflections (universal derived equivalences) – Flip-Flops , with application to posets of tilting modules – Generalized BGP reflections – Hybrid construction • Mirroring with respect to a bipartite structure – Mates of triangular matrix algebras 4

  5. Posets, sheaves, and their derived equivalences Flip-Flops Let ( X, ≤ X ), ( Y, ≤ Y ) be posets, f : X → Y order-preserving. Define two partial orders ≤ f + , ≤ f − on X ⊔ Y as follows: • Keep the original partial orders inside X and Y . • Add the relations x ≤ f + y ⇐ ⇒ f ( x ) ≤ Y y y ≤ f − x ⇐ ⇒ y ≤ Y f ( x ) for x ∈ X , y ∈ Y . + ) u Theorem. ( X ⊔ Y , ≤ f ∼ ( X ⊔ Y , ≤ f − ). 5

  6. � � � � � � � � � � � � � � � � Posets, sheaves, and their derived equivalences Flip-Flop – Example 2 �→ 1 4 �→ 1 5 �→ 3 6 �→ 1 7 �→ 3 9 �→ 8 12 �→ 8 13 �→ 10 14 �→ 11 • 2 • 1 � � � � ������ � � � ���������� � ����������������� � � � � � • 4 • 2 • 3 � � � ���������� � � ������ � � ����������������� � ����������� � • 9 • 5 • 4 � � � � � � ���������� � � � � � � ������������ � � � • 6 � � � � � � � • 8 • 10 � • 5 � � � � � � � � � ���������� � � � � � � � ������ � ����� • 12 • 7 � ����������������� � ����������� • 6 • 9 • 11 � � � � � � � ���������� � � ���������� � � � � � � � � � � � • 1 • 13 � � � � ������������ � � ����������������� � � � � � � � � � � � � � � • 7 � � � � � � � � � � ���� � ���� � � ���������� � � � � • 8 • 3 � • 14 � ����� • 12 • 13 � � � � � � ���������� � � � � • 10 � � � � � � ����� � � � � � � � • 14 � � ���� � � • 11 ( X ⊔ Y , ≤ f ( X ⊔ Y , ≤ f + ) − ) 6

  7. Posets, sheaves, and their derived equivalences Application – Posets of tilting modules Q – quiver without oriented cycles, k – field T Q – poset of tilting modules of kQ [Riedtmann-Schofield, Happel-Unger] x – a source in Q Q ′ – the BGP reflection with respect to x . T x Q – tilting modules containing the simple at x as summand Theorem. T Q and T Q ′ are related via a flip-flop. Q ′ , ≤ f ′ Q , ≤ f T Q ≃ ( T Q \ T x Q ⊔ T x T Q ′ ≃ ( T Q ′ \ T x Q ′ ⊔ T x + ) − ) u Corollary. If Q 1 ∼ Q 2 then T Q 1 ∼ T Q 2 . 7

  8. Posets, sheaves, and their derived equivalences Generalized BGP reflections Let ( Y, ≤ ) be poset, Y 0 ⊆ Y a subset with the property for all y � = y ′ in Y 0 [ y, · ] ∩ [ y ′ , · ] = φ = [ · , y ] ∩ [ · , y ′ ] Define two partial orders ≤ Y 0 + , ≤ Y 0 − on {∗} ∪ Y as follows: • Keep the original partial order inside Y . • Add the relations ∗ < Y 0 + y ⇐ ⇒ ∃ y 0 ∈ Y 0 with y 0 ≤ y y < Y 0 − ∗ ⇐ ⇒ ∃ y 0 ∈ Y 0 with y ≤ y 0 for y ∈ Y . 8

  9. � � � � � � Posets, sheaves, and their derived equivalences Generalized BGP reflections – continued The vertex ∗ is a source in the Hasse diagram of ≤ Y 0 + , with arrows ending at the vertices of Y 0 . The Hasse diagram of ≤ Y 0 − is obtained by reverting the orientations of the arrows from ∗ , making it into a sink . + ) u Theorem. ( {∗} ∪ Y , ≤ Y 0 ∼ ( {∗} ∪ Y , ≤ Y 0 − ). Example. • • � � � ������� � � ������� � � � � � � � � � � � � • � ∗ • • • • • ∗ � � � � ������� � � ������� � � � � � � � � � � • • 9

  10. Posets, sheaves, and their derived equivalences Hybrid construction – setup ( X, ≤ X ), ( Y, ≤ Y ) – posets, { Y x } x ∈ X – collection of subsets Y x ⊆ Y , with the properties: • For all x ∈ X , for all y � = y ′ in Y x [ y, · ] ∩ [ y ′ , · ] = φ = [ · , y ] ∩ [ · , y ′ ] ∼ • For all x ≤ x ′ , there exists an isomorphism ϕ x,x ′ : Y x − → Y x ′ with y ≤ Y ϕ x,x ′ ( y ) for all y ∈ Y x It follows that { Y x } x ∈ X is a local system of subsets of Y : for all x ≤ x ′ ≤ x ′′ . ϕ x,x ′′ = ϕ x ′ ,x ′′ ϕ x,x ′ 10

  11. Posets, sheaves, and their derived equivalences Hybrid construction – result Define two partial orders on ≤ + , ≤ − on X ⊔ Y as follows: • Keep the original partial orders inside X and Y . • Add the relations x ≤ + y ⇐ ⇒ ∃ y x ∈ Y x with y x ≤ Y y y ≤ − x ⇐ ⇒ ∃ y x ∈ Y x with y ≤ Y y x for x ∈ X , y ∈ Y . Theorem. ( X ⊔ Y , ≤ + ) u ∼ ( X ⊔ Y , ≤ − ). Remarks. • When X = {∗} , we recover the generalized BGP reflection. • When Y x = {∗} for all x ∈ X , we recover the flip-flop. 11

  12. Posets, sheaves, and their derived equivalences Mirroring with respect to a bipartite structure Let S be bipartite . ( S = S 0 ⊔ S 1 with s < s ′ ⇒ s ∈ S 0 and s ′ ∈ S 1 ) Let X = { X s } s ∈ S be a collection of posets indexed by S . Define two partial orders ≤ + and ≤ − on � s ∈ S X s as follows: • Keep the original partial order inside each X s . • Add the relations x s < + x t ⇐ ⇒ s < t x t < − x s ⇐ ⇒ t < s for x s ∈ X s , x t ∈ X t . Theorem. ( � s ∈ S X s , ≤ + ) ∼ ( � s ∈ S X s , ≤ − ). 12

  13. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Posets, sheaves, and their derived equivalences Bipartite structure – example S = • • � � � � � � � � � � � � � � • • • X = • • • • • • • � � � ������� � � ������� � � � � � � � � � � � • • • • • • ( � ( � s ∈ S X s , ≤ + ) • • • • • • s ∈ S X s , ≤ − ) � � � ������� � � ������� � � � � � � � � � � � • • • • • • • � � � � � � � � � � � � � � ������� � � ������� � � � � � ������� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � • • • • • • • � � � � ������� � � ������� � � � � � � � � � � • • • • • • 13

  14. Posets, sheaves, and their derived equivalences Mates of triangular matrix algebras Let k be a field, R and S k -algebras and R M S bimodule. Consider the triangular matrix algebras � � � � R M S DM � Λ = and Λ = 0 0 S R where DM = Hom k ( M, k ). Theorem. D b (mod Λ) ≃ D b (mod � Λ), under the assumptions: • dim k R < ∞ , dim k S < ∞ , dim k M < ∞ • gl . dim R < ∞ , gl . dim S < ∞ 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend