m obius number systems
play

M obius number systems Convergence M obius number systems - PowerPoint PPT Presentation

M obius number systems Alexandr Kazda, Petr K urka M obius trans- formations M obius number systems Convergence M obius number systems Alexandr Kazda, Petr K urka Examples Existence Charles University, Prague


  1. M¨ obius number systems Alexandr Kazda, Petr K˚ urka M¨ obius trans- formations M¨ obius number systems Convergence M¨ obius number systems Alexandr Kazda, Petr K˚ urka Examples Existence Charles University, Prague theorem Conclusions Numeration Marseille, March 23–27, 2009

  2. M¨ obius number Outline systems Alexandr Kazda, Petr K˚ urka 1 M¨ obius transformations M¨ obius trans- formations Convergence 2 Convergence M¨ obius number systems Examples 3 M¨ obius number systems Existence theorem 4 Examples Conclusions 5 Existence theorem 6 Conclusions

  3. M¨ obius number systems Alexandr Kazda, Petr K˚ urka • Our goal: To use sequences of M¨ obius transformations to M¨ obius trans- represent points on R = R ∪ {∞} or the unit circle T . formations • A M¨ obius tranformation (MT) is any nonconstant function Convergence M : C ∪ {∞} → C ∪ {∞} of the form M¨ obius number systems M ( z ) = az + b Examples cz + d Existence theorem Conclusions • We will consider MTs that preserve the upper half-plane • or the unit disc D .

  4. M¨ obius number systems Alexandr Kazda, Petr K˚ urka • Our goal: To use sequences of M¨ obius transformations to M¨ obius trans- represent points on R = R ∪ {∞} or the unit circle T . formations • A M¨ obius tranformation (MT) is any nonconstant function Convergence M : C ∪ {∞} → C ∪ {∞} of the form M¨ obius number systems M ( z ) = az + b Examples cz + d Existence theorem Conclusions • We will consider MTs that preserve the upper half-plane • or the unit disc D .

  5. M¨ obius number systems Alexandr Kazda, Petr K˚ urka • Our goal: To use sequences of M¨ obius transformations to M¨ obius trans- represent points on R = R ∪ {∞} or the unit circle T . formations • A M¨ obius tranformation (MT) is any nonconstant function Convergence M : C ∪ {∞} → C ∪ {∞} of the form M¨ obius number systems M ( z ) = az + b Examples cz + d Existence theorem Conclusions • We will consider MTs that preserve the upper half-plane • or the unit disc D .

  6. M¨ obius number systems Alexandr Kazda, Petr K˚ urka • Our goal: To use sequences of M¨ obius transformations to M¨ obius trans- represent points on R = R ∪ {∞} or the unit circle T . formations • A M¨ obius tranformation (MT) is any nonconstant function Convergence M : C ∪ {∞} → C ∪ {∞} of the form M¨ obius number systems M ( z ) = az + b Examples cz + d Existence theorem Conclusions • We will consider MTs that preserve the upper half-plane • or the unit disc D .

  7. M¨ obius number R versus T systems Alexandr 8 -4 Kazda, Petr -3 4 3 K˚ urka -2 2 M¨ obius trans- formations Convergence 1 -1 M¨ obius -2 2 number systems Examples 1/2 -1/2 Existence 1/3 -1/3 theorem 1/4 -1/4 0 Conclusions • Using the stereometric projection, we have a one-to-one correspondence between the upper half-plane and unit disc. • This projection is itself an MT. • Therefore we can translate MTs that represent T to the ones that represent R .

  8. M¨ obius number R versus T systems Alexandr 8 -4 Kazda, Petr -3 4 3 K˚ urka -2 2 M¨ obius trans- formations Convergence 1 -1 M¨ obius -2 2 number systems Examples 1/2 -1/2 Existence 1/3 -1/3 theorem 1/4 -1/4 0 Conclusions • Using the stereometric projection, we have a one-to-one correspondence between the upper half-plane and unit disc. • This projection is itself an MT. • Therefore we can translate MTs that represent T to the ones that represent R .

  9. M¨ obius number R versus T systems Alexandr 8 -4 Kazda, Petr -3 4 3 K˚ urka -2 2 M¨ obius trans- formations Convergence 1 -1 M¨ obius -2 2 number systems Examples 1/2 -1/2 Existence 1/3 -1/3 theorem 1/4 -1/4 0 Conclusions • Using the stereometric projection, we have a one-to-one correspondence between the upper half-plane and unit disc. • This projection is itself an MT. • Therefore we can translate MTs that represent T to the ones that represent R .

  10. M¨ obius number R versus T systems Alexandr 8 -4 Kazda, Petr -3 4 3 K˚ urka -2 2 M¨ obius trans- formations Convergence 1 -1 M¨ obius -2 2 number systems Examples 1/2 -1/2 Existence 1/3 -1/3 theorem 1/4 -1/4 0 Conclusions • Using the stereometric projection, we have a one-to-one correspondence between the upper half-plane and unit disc. • This projection is itself an MT. • Therefore we can translate MTs that represent T to the ones that represent R .

  11. M¨ obius number R versus T systems Alexandr Kazda, Petr K˚ urka M¨ obius trans- formations Convergence M¨ obius • We will be mostly talking about representing the unit number systems circle. Examples • However, the example number systems represent R . Existence theorem • How to tell them apart: half-plane-preserving MTs have a Conclusions hat, disc-preserving MTs don’t.

  12. M¨ obius number R versus T systems Alexandr Kazda, Petr K˚ urka M¨ obius trans- formations Convergence M¨ obius • We will be mostly talking about representing the unit number systems circle. Examples • However, the example number systems represent R . Existence theorem • How to tell them apart: half-plane-preserving MTs have a Conclusions hat, disc-preserving MTs don’t.

  13. M¨ obius number R versus T systems Alexandr Kazda, Petr K˚ urka M¨ obius trans- formations Convergence M¨ obius • We will be mostly talking about representing the unit number systems circle. Examples • However, the example number systems represent R . Existence theorem • How to tell them apart: half-plane-preserving MTs have a Conclusions hat, disc-preserving MTs don’t.

  14. M¨ obius number Disc M¨ obius transformations systems Alexandr M : D → D Kazda, Petr K˚ urka M¨ obius trans- formations Convergence • A direct calculation shows that all MTs that preserve D M¨ obius number must look like this: systems Examples • M ( z ) = α z + β Existence β z + α, theorem Conclusions • where | β | < | α | are complex numbers. • Examples follow.

  15. M¨ obius number Disc M¨ obius transformations systems Alexandr M : D → D Kazda, Petr K˚ urka M¨ obius trans- formations Convergence • A direct calculation shows that all MTs that preserve D M¨ obius number must look like this: systems Examples • M ( z ) = α z + β Existence β z + α, theorem Conclusions • where | β | < | α | are complex numbers. • Examples follow.

  16. M¨ obius number Disc M¨ obius transformations systems Alexandr M : D → D Kazda, Petr K˚ urka M¨ obius trans- formations Convergence • A direct calculation shows that all MTs that preserve D M¨ obius number must look like this: systems Examples • M ( z ) = α z + β Existence β z + α, theorem Conclusions • where | β | < | α | are complex numbers. • Examples follow.

  17. M¨ obius number Disc M¨ obius transformations systems Alexandr M : D → D Kazda, Petr K˚ urka M¨ obius trans- formations Convergence • A direct calculation shows that all MTs that preserve D M¨ obius number must look like this: systems Examples • M ( z ) = α z + β Existence β z + α, theorem Conclusions • where | β | < | α | are complex numbers. • Examples follow.

  18. M¨ obius number Examples of M¨ obius systems Alexandr transformations Kazda, Petr K˚ urka M¨ obius trans- formations 8 8 8 -4 -4 -4 -3 4 -3 4 -3 4 3 3 3 Convergence -2 -2 -2 2 2 2 M¨ obius number systems 1 1 1 -1 -1 -1 Examples Existence 1/2 1/2 1/2 -1/2 -1/2 -1/2 theorem -1/3 1/3 -1/3 1/3 -1/3 1/3 1/4 1/4 1/4 -1/4 -1/4 -1/4 Conclusions 0 0 0 M 1 ( z ) = (2 i +1) z +1 (7+2 i ) z + i M 0 ( z ) = 3 z − i M 2 ( z ) = iz − 3 2 i − 1 − iz +(7 − 2 i ) ˆ ˆ ˆ M 2 ( x ) = 4 x +1 M 0 ( x ) = x / 2 M 1 ( x ) = x + 1 3 − x hyperbolic parabolic elliptic

  19. M¨ obius number Examples of M¨ obius systems Alexandr transformations Kazda, Petr K˚ urka M¨ obius trans- formations 8 8 8 -4 -4 -4 -3 4 -3 4 -3 4 3 3 3 Convergence -2 -2 -2 2 2 2 M¨ obius number systems 1 1 1 -1 -1 -1 Examples Existence 1/2 1/2 1/2 -1/2 -1/2 -1/2 theorem -1/3 1/3 -1/3 1/3 -1/3 1/3 1/4 1/4 1/4 -1/4 -1/4 -1/4 Conclusions 0 0 0 M 1 ( z ) = (2 i +1) z +1 (7+2 i ) z + i M 0 ( z ) = 3 z − i M 2 ( z ) = iz − 3 2 i − 1 − iz +(7 − 2 i ) ˆ ˆ ˆ M 2 ( x ) = 4 x +1 M 0 ( x ) = x / 2 M 1 ( x ) = x + 1 3 − x hyperbolic parabolic elliptic

  20. M¨ obius number Examples of M¨ obius systems Alexandr transformations Kazda, Petr K˚ urka M¨ obius trans- formations 8 8 8 -4 -4 -4 -3 4 -3 4 -3 4 3 3 3 Convergence -2 -2 -2 2 2 2 M¨ obius number systems 1 1 1 -1 -1 -1 Examples Existence 1/2 1/2 1/2 -1/2 -1/2 -1/2 theorem -1/3 1/3 -1/3 1/3 -1/3 1/3 1/4 1/4 1/4 -1/4 -1/4 -1/4 Conclusions 0 0 0 M 1 ( z ) = (2 i +1) z +1 (7+2 i ) z + i M 0 ( z ) = 3 z − i M 2 ( z ) = iz − 3 2 i − 1 − iz +(7 − 2 i ) ˆ ˆ ˆ M 2 ( x ) = 4 x +1 M 0 ( x ) = x / 2 M 1 ( x ) = x + 1 3 − x hyperbolic parabolic elliptic

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend