fast arithmetical algorithms in m obius number systems
play

Fast arithmetical algorithms in M obius number systems Petr K - PowerPoint PPT Presentation

Fast arithmetical algorithms in M obius number systems Petr K urka Center for Theoretical Study Academy of Sciences and Charles University in Prague Valparaiso, November 2011 Iterative systems X compact metric space, A finite alphabet (


  1. Fast arithmetical algorithms in M¨ obius number systems Petr K˚ urka Center for Theoretical Study Academy of Sciences and Charles University in Prague Valparaiso, November 2011

  2. Iterative systems X compact metric space, A finite alphabet ( F a : X → X ) a ∈ A continuous. ( F u : X → X ) u ∈ A ∗ , F uv = F u ◦ F v , F λ = Id Theorem(Barnsley) If ( F a : X → X ) a ∈ A are contractions, then there exists a unique attractor Y ⊆ X with Y = � a ∈ A F a ( Y ), and a continuous surjective symbolic mapping Φ : A N → Y � F u [0 , n ) ( X ) , u ∈ A N { Φ( u ) } = n > 0

  3. Binary system A = { 0 , 1 } , Φ 2 : A N → [0 , 1] F 0 ( x ) = x 2 , F 1 ( x ) = x + 1 2 � u i · 2 − i − 1 , u ∈ A N Φ 2 ( u ) = i ≥ 0 [1] [0] 0 1 a → F − 1 Expansion graph: x a ( x ) if x ∈ W a = F a [0 , 1]

  4. Binary signed system is redundant A = { 1 , 0 , 1 } , Φ 3 : A N → [ − 1 , 1] F 1 ( x ) = x − 1 2 , F 1 ( x ) = x + 1 , F 0 ( x ) = x 2 2 � u i · 2 − i − 1 , u ∈ A N Φ 3 ( u ) = i ≥ 0 [1] [0] - [1] -1 1

  5. Real orientation-preserving M¨ obius transformations M a , b , c , d ( x ) = ax + b cx + d , ad − bc > 0 act on R = R ∪ {∞} and on U = { z ∈ C : ℑ ( z ) > 0 } Stereographic projection d ( z ) = iz +1 z + i d : R → ∂ D = { z ∈ C : | z | = 1 } unit circle d : U → D = { z ∈ C : | z | < 1 } unit disc

  6. obius transformations � M = d ◦ M ◦ d − 1 Disc M¨ 1/0 1/0 1/0 -4 4 -3 3 -2 -2 2 2 -1 1 -1 1 -1 1 -1/2 1/2 -1/4 1/4 0 0 0 � F 1 ( z ) = (2+ i ) z +1 � � (7+2 i ) z + i F 0 ( z ) = 3 z − i F 2 ( z ) = iz +3 z +2 − i − iz +(7 − 2 i ) F 2 ( x ) = 4 x +1 F 0 ( x ) = x / 2 F 1 ( x ) = x + 1 3 − x hyperbolic parabolic elliptic � Mean value E ( � z d ( � M ℓ ) = � M ℓ ) = M (0) ∂ D

  7. Circle metric and derivation the length of arc between d ( x ) and d ( y ): | x − y | ̺ ( x , y ) = 2 arcsin � ( x 2 + 1)( y 2 + 1) circle derivation of M ( x ) = ( ax + b ) / ( cx + d ): ̺ ( M ( x ) , M ( y )) M • ( x ) = lim ̺ ( x , y ) y → x ( ad − bc )( x 2 + 1) = ( ax + b ) 2 + ( cx + d ) 2

  8. Contracting and expanding intervals U u = { x ∈ R : F • u ( x ) < 1 } , F u ( U u ) = V u V u = { x ∈ R : ( F − 1 u ) • ( x ) > 1 } ∞ √ √ − 2 2 V √ √ 2 2 − 2 2 − 1 1 V 2 2 U U F(x)=x/2 F(x)=x+1

  9. M¨ obius number system(MNS) ( F , W ) ( F a : R → R ) a ∈ A M¨ obius transformations W a ⊆ V a expansion intervals � a ∈ A W a = R a → F − 1 Expansion graph: x a ( x ) if x ∈ W a u 0 u 1 u 2 → F − 1 → F − 1 u 0 ( x ) u 0 u 1 ( x ) → · · · x x ∈ W u 0 , F − 1 u 0 ( x ) ∈ W u 1 , F − 1 u 0 u 1 ( x ) ∈ W u 2 W u := W u 0 ∩ F u 0 ( W u 1 ) ∩ · · · ∩ F u [0 , n ) ( W u n ) x ∈ W u iff u is the label of a path with source x :

  10. Expansion subshift: S W := { u ∈ A N : ∀ n , W u [0 , n ) � = ∅} Symbolic extension: Φ( u ) = lim n →∞ F u [0 , n ) ( i ) ∈ R , u ∈ S W Φ : S W → R is continuous and surjective.

  11. 1 = F a 0 1 F 0 F a 1 Continued fractions a 0 − 1 F 0 · · · 1 a 1 − a 2 − · · · 1/0 1/0 F 1 ( x ) = x − 1 , W 1 = ( ∞ , − 1) -4/1 -4/1 4/1 4/1 -3/1 -3/1 3/1 3/1 F 0 ( x ) = − 1 / x , W 0 = ( − 1 , 1) -2/1 -2/1 111 111 --- 2/1 2/1 F 1 ( x ) = x + 1 , W 1 = (1 , ∞ ) -- 11 11 110 110 -3/2 -3/2 -- 3/2 3/2 - 101 - 101 - 10 10 S W is a SFT. 1 1 - forbidden words: 0 -1/1 -1/1 1/1 1/1 - 00 , 11 , 11 , 101 , 101 01 01 0 0 1 1 0 0 - -- 011 011 a → F − 1 a ( x ) if x ∈ W a -1/2 -1/2 x 1/2 1/2 - -1/3 -1/3 1/3 1/3 1 1 1 -2 -1 0 1 2 3 0/1 0/1 0

  12. Binary signed system, A = { 1 , 1 , 2 } -8/1 -8/1 F 1 ( x ) = ( x − 1) / 2 8/1 8/1 -4/1 -4/1 4/1 4/1 F 1 ( x ) = ( x + 1) / 2 -2/1 -2/1 F 2 ( x ) = 2 x 222 2/1 2/1 22 221 221 - 1 -3/2 -3/2 3/2 3/2 W 1 = ( − 1 , 0) → ( − 1 , 1) 211 211 -- 1 2 W 1 = (0 , 1) → ( − 1 , 1) 21 21 - 2 → ( 1 2 , − 1 W 2 = (1 , − 1) 2 ) -1/1 -1/1 1/1 1/1 111 111 -7/8 -7/8 7/8 7/8 --- 1 1 1 1 1 1 - S W is a SFT. - - -3/4 -3/4 3/4 3/4 - 111 111 forbidden words: -- -5/8 -5/8 5/8 5/8 12 , 12 , 211 , 211 - 11 11 - -1/2 -1/2 1/2 1/2 1 1 - - 1 1 1 1 - -3/8 -3/8 3/8 3/8 S W = { 2 n u : u ∈ { 1 , 1 } N } 111 -- - 111 Φ(2 n u ) = � ∞ -1/4 -1/4 1/4 1/4 i =0 u i · 2 n − i -1/8 -1/8 1/8 1/8 0/1 0/1

  13. Fractional bilinear functions P ( x , y ) = axy + bx + cy + d exy + fx + gy + h , M ( x ) = ax + b cx + d .     a 0 b 0 a b 0 0     0 a 0 b c d 0 0 M x =  , M y =        c 0 d 0 0 0 a b 0 c 0 d 0 0 c d P ( Mx , y ) = PM x ( x , y ), P ( x , My ) = PM y ( x , y ), MP ( x , y ) are fractional bilinear functions.

  14. Bilinear graph vertices: ( P , u , v ), u , v ∈ S W . a → ( F − 1 P ( W u 0 , W v 0 ) ⊆ W a ( P , u , v ) a P , u , v ) if λ → ( PF x ( P , u , v ) u 0 , σ ( u ) , v ) λ → ( PF y ( P , u , v ) v 0 , u , σ ( v )) Proposition If u , v ∈ S W and w ∈ A N is a label of a path with source ( P , u , v ), then w ∈ S W and Φ( w ) = P (Φ( u ) , Φ( v )).

  15. Linear graph vertices: ( M , u ) ∈ M 1 × S W , a → ( F − 1 emission: ( M , u ) a M , u ) if M ( W u 0 ) ⊆ W a λ absorption: ( M , u ) → ( MF u 0 , σ ( u )) Proposition There exists a path with source ( M , u ) whose label w = f ( u ) ∈ S W and Φ( w ) = M (Φ( u )). If M remain bounded, then the algorithm has linear time complexity.

  16. Linear graph vertices: ( M , u ) ∈ M 1 × S W , a → ( F − 1 emission: ( M , u ) a M , u ) if M ( W u 0 ) ⊆ W a λ absorption: ( M , u ) → ( MF u 0 , σ ( u )) Proposition There exists a path with source ( M , u ) whose label w = f ( u ) ∈ S W and Φ( w ) = M (Φ( u )). If M remain bounded, then the algorithm has linear time complexity.

  17. Bimodular group: det( M ) = 2 p - 2101 - 2011 - 1102 - 1012 1012 1102 2011 2101 - 210 - 201 - 110 - 101 101 110 201 210 3 - 21 20 - 11 10 10 11 20 21 2 2 1 1 1 1 2 2 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 2 1 -1 __ -3 __ -2 __ -1 __ -1 __ -1 __ -1 __ 0 _ 0 _ 1 _ _ 1 _ 1 1 _ _ 2 3 _ _ 1 0 1 1 1 1 2 3 1 1 3 2 1 1 1 1 0 det( M ) = 2 , || M || = 6 , tr ( M ) = 3 0 1 2 3 a x +1 2 x x 2 x + 1 F a x +2 2 x +1 ( − 1 ( 1 W a = V a 3 , 1) (0 , 2) 2 , ∞ ) (1 , − 3)

  18. Redundant bimodular system W a = V ( F a ) -7/1 1/0 -5/1 7/1 5/1 1 / 1 3 / - 3 1 / 1 4 3 2 4 3 / - 2 45 32 34 43 46 53 24 31 52 25 -3/2 3/2 4 35 42 3 -4/3 26 51 4/3 54 47 30 23 64 5 2 13 5 2 5 2 65 12 -1/1 40 73 04 37 1/1 56 21 6 1 6 6 57 20 1 1 -3/4 3/4 62 15 74 03 -2/3 2/3 67 06 7 0 71 10 60 75 02 17 61 16 - 1 1 07 70 / / 2 7 0 2 76 7 0 01 - 1 1 / / 3 3 -1/5 1/5 -1/7 1/7 0/1 Top five algorithm: Keeps five matrices with the smallest norm.

  19. Ergodic theory of singular transformations M ( x ) = ax + b cx + d , ad − bc = 0 2 : ( ax 0 + bx 1 ) y 1 = ( cx 0 + dx 1 ) y 0 } � M = { ( x , y ) ∈ R = ( R × { s M } ) ∪ ( { u m } × R ) s M = M ( i ) ∈ { a c , b d } ∩ R : stable point u M = M − 1 ( i ) ∈ {− b a , − d c } ∩ R : unstable point If M is singular, then s MF = s M , u FM = u M . Emission acts on columns, absorption acts on rows of singular matrices.

  20. � x 2 0 + x 2 Growth of norm || x || = 1 ( ad − bc )( x 2 0 + x 2 1 ) M • ( x 0 x 1 ) = ( ax 0 + bx 1 ) 2 + ( cx 0 + dx 1 ) 2 = det( M ) · || x || 2 || M ( x )) || 2 � || M ( x ) || det( M ) = M • ( x ) || x ||

  21. Invariant emission measure Partition of unity w a : R → [0 , 1], a ∈ A � supp ( w a ) ⊆ W a , w a ( x ) = 1 a ∈ A w a → F − 1 Emission process x a ( x ) has a unique Lebesgue-continuous invariant measure µ . � � 1 ln det( F u ) e n = u ) • d µ ( F − 1 2 u ∈L n ( S W ) e n + m ≤ e n + e m : emission quotients

  22. Invariant absorption measure � � w a · w b ◦ F − 1 P a = w a d µ, P ab = d µ a S W is a SFT of order 2: R ab = P ab / P a . R ab → ( F t Absorption process ( x , a ) − b ( x ) , b ) in R × A has a unique invariant measure ν ( U , a ) = P a ν a ( U ) � � 1 ln det( F u ) a n = u ) • d ν a 2 P au ( F t au ∈L n ( S W ) a n + m ≤ a n + a m : absorption quotients

  23. Transaction quotient E = n →∞ exp( e n / n ) : lim Emission quotient A = n →∞ exp( a n / n ) : lim Absorption quotient T = E · A : Transaction quotient T > √ r : positional r -ary system (Heckmann). T < 1 . 1: redundant bimodular system.

  24. Conjecture There exists a multiplication algorithm with average linear time complexity.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend