on privacy preserving protocols for smart metering systems
play

On Privacy-Preserving Protocols for Smart Metering Systems Defense - PowerPoint PPT Presentation

On Privacy-Preserving Protocols for Smart Metering Systems Defense - Verteidigung - Seminrio de Ps-Graduao Fbio Borges Laboratrio Nacional de Computao Cientfica (LNCC) Coordenao de Sistemas e Redes (CSR) Table of Contents


  1. PPP1 - - SDC-Nets SDC-Nets Using In-Network Aggregation [BM14a] supplier E n c ( m 1 , j ) Enc( m 1 , j ) + Enc( m 2 , j ) + Enc( m 3 , j ) = Enc( m 1 , j + m 2 , j + m 3 , j ) Enc( m 2 , j ) Aggregation Encryption N Enc( m i , j ) = m i , j + H( k i || j ) C = � Enc ( m i , j ) i =1 Decryption N N Dec ( C ) = C − � H( k i || j ) = � m i , j i =1 i =1 August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 22/59

  2. PPP1 PPP1 meets the following requirements Requirement 1 - ✓ Recoverability of consolidated consumption Requirement 2 - ✗ € Recoverability of bill based on dynamic pricing Requirement 3 - ✗ Verification (auditability) Requirement 4 - ✓ Efficiency August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 23/59

  3. € PPP2 - - Commitment Commitment Based on ECC [BM14a] Meters Supplier . . . August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 24/59

  4. € PPP2 - - Commitment Commitment Based on ECC [BM14a] Meters Commit( m Supplier ) || Sign 1 j , 1 j , Commit( m 2 , j ) || Sign 2 , j ) || Sign 3 j , Commit( m 3 j , n i , j g i S | | ) m i , j ( t m i m o j C ) || Sign ˜ , ı j Commit( m ˜ , . ı . . August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 24/59

  5. € PPP2 - - Commitment Commitment Based on ECC [BM14a] Meters Commit( m Supplier ) || Sign 1 j , 1 j , Commit( m 2 , j ) || Sign 2 , j ) || Sign 3 j , Commit( m 3 j , n i , j g i S | | ) m i , j ( t m i m o j C ) || Sign ˜ , ı j Commit( m ˜ , . ı . . Commitment Commit( m i , j ) = k i · H Ω ( j ) + m i , j · P August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 24/59

  6. PPP2 PPP2 meets the following requirements Requirement 1 - ✗ Recoverability of consolidated consumption Requirement 2 - ✓ € Recoverability of bill based on dynamic pricing Requirement 3 - ✓ Verification (auditability) Requirement 4 - ✓ Efficiency August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 25/59

  7. PPP2 - Verification [BDBBM14; BM14b; BM14a; BBM14; BVM15] Supplier Meter i August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 26/59

  8. PPP2 - Verification [BDBBM14; BM14b; BM14a; BBM14; BVM15] Supplier Meter i Enc( m i , j ) , Enc( m i , j +1 ) , . . . August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 26/59

  9. PPP2 - Verification [BDBBM14; BM14b; BM14a; BBM14; BVM15] Supplier Meter i Enc( m i , j ) , Enc( m i , j +1 ) , . . . Q = � j Enc( m i , j ) = � j k i · H Ω ( j ) + m i , j · P August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 26/59

  10. PPP2 - Verification [BDBBM14; BM14b; BM14a; BBM14; BVM15] j k i · H Ω ( j ) j m i , j and V = � v = � Supplier Meter i Enc( m i , j ) , Enc( m i , j +1 ) , . . . Q = � j Enc( m i , j ) = � j k i · H Ω ( j ) + m i , j · P August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 26/59

  11. PPP2 - Verification [BDBBM14; BM14b; BM14a; BBM14; BVM15] j k i · H Ω ( j ) j m i , j and V = � v = � Supplier Meter i Enc( m i , j ) , Enc( m i , j +1 ) , . . . Q = � j Enc( m i , j ) = � j k i · H Ω ( j ) + m i , j · P Verification ? v · P = Q − V August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 26/59

  12. PPP2 - Performance [BM14b; BM14a; BVM15; BDBBM14; LBPN12] � 1 / 3 ��� 64 � � � π o = 2 x = (ln n ) 1 / 3 (ln ln n ) 2 / 3 exp + O (1) 2 , 9 1 . 5 · 10 4 Factorization Elliptic Curves y gives the key bit length y = 506 . 526 exp(0 . 0128886 x ) 1 0 . 5 y = 2 x 0 100 150 200 250 x gives the level of security by brute force August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 27/59

  13. Table of Contents Outline Introduction Privacy-Preserving Protocols (PPPs) PPP1 - Based on SDC-Nets PPP2 - Based on Commitment PPP3 - Based on ADC-Net PPP4 - Based on Quantum Cryptography ADC-Nets Simulation Using Real-World Data Conclusion and Outlook August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 28/59

  14. € PPP3 - - New Concept ADC-Net - [BBM14; BM14b; BVM15] Meters Enc( m Supplier ) || Sign 1 j , 1 j , Enc( m 2 , j ) || Sign 2 , j ) || Sign 3 j , Enc( m 3 j , . . . j ) || Sign ˜ , ı j . ˜ , Enc( m . ı . August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 29/59

  15. € PPP3 - - New Concept ADC-Net - [BBM14; BM14b; BVM15] Meters Encryption Enc( m Enc : Z n × Z n → Z n 2 Supplier ) || Sign 1 j , �→ (1 + n ) m i , j · g h j · k i mod n 2 Enc i ( m i , j ) 1 j , Enc( m 2 , j ) || Sign 2 , j ) || Sign 3 j , Enc( m 3 j , . . . j ) || Sign ˜ , ı j . ˜ , Enc( m . ı . August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 29/59

  16. € PPP3 - - New Concept ADC-Net - [BBM14; BM14b; BVM15] Meters Encryption Enc( m Enc : Z n × Z n → Z n 2 Supplier ) || Sign 1 j , �→ (1 + n ) m i , j · g h j · k i mod n 2 Enc i ( m i , j ) 1 j , Enc( m 2 , j ) || Sign 2 , j Aggregation C j = � ˜ ) || Sign 3 j ı i =1 Enc i ( m i , j ) , Enc( m 3 j , . . . j ) || Sign ˜ , ı j . ˜ , Enc( m . ı . August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 29/59

  17. € PPP3 - - New Concept ADC-Net - [BBM14; BM14b; BVM15] Meters Encryption Enc( m Enc : Z n × Z n → Z n 2 Supplier ) || Sign 1 j , �→ (1 + n ) m i , j · g h j · k i mod n 2 Enc i ( m i , j ) 1 j , Enc( m 2 , j ) || Sign 2 , j Aggregation C j = � ˜ ) || Sign 3 j ı i =1 Enc i ( m i , j ) , Enc( m 3 j , . . . Decryption j ) || Sign ˜ , ı Dec : Z n 2 → Z n j . �→ ( C j · g − ht · s mod n 2 ) − 1 ˜ , Enc( m . ı Dec ( C j ) . n August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 29/59

  18. PPP3 PPP3 meets the following requirements Requirement 1 - ✓ Recoverability of consolidated consumption Requirement 2 - ✓ € Recoverability of bill based on dynamic pricing Requirement 3 - ✓ Verification (auditability) Requirement 4 - ✓ Efficiency August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 30/59

  19. PPP4 - - Quantum Cryptography No Keys [BSM14; BPP12] Meters Supplier . . . August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 31/59

  20. PPP4 - - Quantum Cryptography No Keys [BSM14; BPP12] Meters | ψ � 1 U 1 Supplier | ψ 2 � U 2 . . . ı � U ˜ | ψ ˜ ı August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 31/59

  21. PPP4 - - Quantum Cryptography No Keys [BSM14; BPP12] Meters | ψ � 1 U 1 exp( ı ˆ N U 1 δ 1 ) | ψ 1 � U 1 Supplier | ψ 2 � U 2 � ) | ψ exp( ı ˆ 2 δ U 2 2 N 2 U . . . ı � U ˜ ı ı ) | ψ ˜ ı � U ˜ | ψ ˜ ı δ ˜ ı exp( ı ˆ N U ˜ August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 31/59

  22. PPP4 PPP4 meets the following requirements Requirement 1 - ✓ Recoverability of consolidated consumption Requirement 2 - ✗ € Recoverability of bill based on dynamic pricing Requirement 3 - ✗ Verification (auditability) Requirement 4 - depends on quantum devices Efficiency August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 32/59

  23. Table of Contents Introduction Privacy-Preserving Protocols (PPPs) PPP1 - Based on SDC-Nets PPP2 - Based on Commitment PPP3 - Based on Asymmetric DC-Net (ADC-Net) PPP4 - Based on Quantum Cryptography ADC-Nets Simulation Using Real-World Data Conclusion and Outlook August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 33/59

  24. Symmetric DC-Nets (SDC-Nets) [Cha88] - Dining Cryptographers Problem B Agent A C August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 34/59

  25. SDC-Nets [Cha88] - Dining Cryptographers Problem B K AB K BA Agent A C August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 34/59

  26. SDC-Nets [Cha88] - Dining Cryptographers Problem B K AB K BA Agent K CB A K BC C August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 34/59

  27. SDC-Nets [Cha88] - Dining Cryptographers Problem B K AB K BA Agent K CB A K BC C K CA K AC August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 34/59

  28. SDC-Nets Unconditional Secure [Cha88] B Agent A m 1 , j + k AB + k AC − k BA − k CA C August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 35/59

  29. SDC-Nets Unconditional Secure [Cha88] B m + 2 , j k + BA k − Agent BC k − AB k A CB m 1 , j + k AB + k AC − k BA − k CA C August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 35/59

  30. SDC-Nets Unconditional Secure [Cha88] B m + 2 , j k + BA k − Agent BC k − AB k A CB m 1 , j + k AB + k AC − k BA − k CA C k − BC k − AC + k CB + k CA m 3 , j August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 35/59

  31. SDC-Nets Unconditional Secure [Cha88] B m + 2 , j k + BA k − Agent BC k − AB k A CB m 1 , j + k AB + k AC − k BA − k CA C k − BC k − AC + k CB + k CA m 3 , j August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 35/59

  32. SDC-Nets Unconditional Secure [Cha88] B m + 2 , j k + BA k − BC k Agent − AB k A CB m 1 , j + k AB + k AC − k BA − k CA C k − BC k − AC + k CB + k CA m 3 , j August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 35/59

  33. SDC-Nets Unconditional Secure [Cha88] B m + 2 , j k + BA k − BC k Agent − AB k A CB m 1 , j + k AB + k AC − k BA − k CA C k − BC k − AC + k CB + k CA m 3 , j August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 35/59

  34. SDC-Nets [GJ04] B Agent A C August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 36/59

  35. SDC-Nets [GJ04] B Agent A m 1 , j +H( k AB || j ) +H( k AC || j ) − H( k BA || j ) − H( k CA || j ) C August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 36/59

  36. SDC-Nets [GJ04] B m + 2 , j H ( k | | ) BA j + H ( k | | ) BC j − H ( k Agent | | j ) AB − H A ( k | | j ) CB m 1 , j +H( k AB || j ) +H( k AC || j ) − H( k BA || j ) − H( k CA || j ) C August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 36/59

  37. SDC-Nets [GJ04] B m + 2 , j H ( k | | ) BA j + H ( k | | ) BC j − H ( k Agent | | j ) AB − H A ( k | | j ) CB m 1 , j +H( k AB || j ) +H( k AC || j ) − H( k BA || j ) − H( k CA || j ) ) | | j C H ( k BC ) − | j | ( H k AC ) − | | j H ( k + CB ) | | j H ( k + CA m 3 , j August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 36/59

  38. SDC-Net Keys for 10 users August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 37/59

  39. SDC-Net Keys for 10 users August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 37/59

  40. SDC-Net Keys for 10 users August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 37/59

  41. SDC-Nets versus AHEPs Symmetric DC-Nets (SDC-Nets) B m 2 , j + H( k BA || j ) + H( k BC || j ) − H( k AB || j ) − H( k CB || j ) Agent A m 1 , j + H( k AB || j ) + H( k AC || j ) − H( k BA || j ) − H( k CA || j ) m 3 , j + H( k CA || j ) + H( k CB || j ) − H( k AC || j ) − H( k BC || j ) C Additive homomorphic encryption primitives (AHEPs) Agent E n c ( m 1 ) , j Enc( m 1 , j ) · Enc( m 2 , j ) · Enc( m 3 , j ) = Enc( m 1 , j + m 2 , j + m 3 , j ) Enc( m 2 , j ) August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 38/59

  42. ADC-Net Required Properties [BBM14; BM14b; BVM15] Properties SDC-Nets AHEPs ADC-Net Collusion of O (˜ ı ) ✓ ✗ Set of trusted users ✓ ✗ Messages to the counting agent ✓ ✗ Minimum number of messages ✓ ✓ Scalable ✗ ✓ Permanent keys ✓ ✓ Based on trapdoors ✓ ✓ Keys stored per user 2(˜ ı − 1) 1 ı 2 ) Total of keys O (˜ 2 Polynomial time ✓ ✓ One cannot disrupt ✗ ✗ Verification as commitment ✗ ✗ August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 39/59

  43. ADC-Net Required Properties [BBM14; BM14b; BVM15] Properties SDC-Nets AHEPs ADC-Net Collusion of O (˜ ı ) ✓ ✗ ✓ Set of trusted users ✓ ✗ ✓ Messages to the counting agent ✓ ✗ ✓ Minimum number of messages ✓ ✓ ✓ Scalable ✗ ✓ ✓ Permanent keys ✓ ✓ ✓ Based on trapdoors ✓ ✓ ✓ Keys stored per user 2(˜ ı − 1) 1 1 ı 2 ) Total of keys O (˜ 2 O (˜ ı ) Polynomial time ✓ ✓ ✓ One cannot disrupt ✗ ✗ ✓ Verification as commitment ✗ ✗ ✓ August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 40/59

  44. Interesting Results Beyond the State of the Art Result: Asymmetric DC-Nets are abstractions of Symmetric DC-Nets [BBM14] August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 41/59

  45. Interesting Results Beyond the State of the Art Result: Asymmetric DC-Nets are abstractions of Symmetric DC-Nets [BBM14] Result: AHEPs are particular cases of ADC-Nets August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 41/59

  46. Interesting Results Beyond the State of the Art Result: Asymmetric DC-Nets are abstractions of Symmetric DC-Nets [BBM14] Result: AHEPs are particular cases of ADC-Nets Example Paillier is a particular case of an ADC-Net August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 41/59

  47. Table of Contents Introduction Privacy-Preserving Protocols (PPPs) PPP1 - Based on SDC-Nets PPP2 - Based on Commitment PPP3 - Based on Asymmetric DC-Net (ADC-Net) PPP4 - Based on Quantum Cryptography ADC-Nets Simulation Using Real-World Data Conclusion and Outlook August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 42/59

  48. Dataset Raw Dataset ✗ The raw dataset has inconsistencies August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 43/59

  49. Dataset Raw Dataset ✗ The raw dataset has inconsistencies Sanitized Dataset ✓ ◮ 6 435 meters ◮ 25 726 rounds ◮ 165 546 810 measurements August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 43/59

  50. Dataset Raw Dataset ✗ The raw dataset has inconsistencies Sanitized Dataset ✓ ◮ 6 435 meters ◮ 25 726 rounds ◮ 165 546 810 measurements Verification Inconsistencies ⇒ measurements collected without verification August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 43/59

  51. Comparison of requirements between Privacy-Preserving Protocol (PPP) € Protocol Efficiency Enc Agg Dec PPP1 ✓ ✗ ✗ O (1) O (˜ ı ) O (˜ ı ) PPP2 O (log( k )) O (˜ ı ) O ( k ) ✗ ✓ ✓ PPP3 ✓ ✓ ✓ O (log( k )) O (˜ ı ) O (log( k )) EPPP4SMS 2 O (log( k )) O (˜ ı ) O (log( n )) ✓ ✓ ✓ LOP - SDC-Net O (˜ ı ) NA O (˜ ı ) ✓ ✗ ✗ Paillier - AHEP ✓ ✗ ✗ O (log( n )) O (˜ ı ) O (log( n )) IEEE Trans. Smart Grid - Impact Factor: 4.334 “EPPP4SMS: Efficient Privacy-Preserving Protocol for Smart Metering Systems and Its Simulation Using Real-World Data” August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 44/59

  52. Overall Performance Race protocols Smart Grids Telecooperation PPP1 PPP2 PPP3 EPPP4SMS LOP Paillier Smart Meters Efficient Protocols August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 45/59

  53. Overall Performance Race protocols PPP1: the Fastest Horst Görtz Foundation PPP1 PPP2 PPP3 EPPP4SMS LOP Paillier TK Maxx Darmstadt Efficient Protocols August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 46/59

  54. Overall Performance Race protocols PPP3: the Complete PPP3 is the Favorite PPP1 PPP2 PPP3 EPPP4SMS LOP Paillier One Selected Award 10 Selected Papers August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 47/59

  55. Table of Contents Introduction Privacy-Preserving Protocols (PPPs) PPP1 - Based on SDC-Nets PPP2 - Based on Commitment PPP3 - Based on Asymmetric DC-Net (ADC-Net) PPP4 - Based on Quantum Cryptography ADC-Nets Simulation Using Real-World Data Conclusion and Outlook August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 48/59

  56. Conclusion ◮ Privacy-Preserving Protocols (PPPs) only work for large aggregations August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 49/59

  57. Conclusion ◮ PPPs only work for large aggregations ◮ PPP1 has the fastest Enc ( m i , j ) August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 49/59

  58. Conclusion ◮ PPPs only work for large aggregations ◮ PPP1 has the fastest Enc ( m i , j ) ◮ PPP2 and PPP3 are exponentially faster than others August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 49/59

  59. Conclusion ◮ PPPs only work for large aggregations ◮ PPP1 has the fastest Enc ( m i , j ) ◮ PPP2 and PPP3 are exponentially faster than others ◮ PPP4 is resistant against quantum attacks August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 49/59

  60. Conclusion ◮ PPPs only work for large aggregations ◮ PPP1 has the fastest Enc ( m i , j ) ◮ PPP2 and PPP3 are exponentially faster than others ◮ PPP4 is resistant against quantum attacks ◮ The concept of ADC-Nets is introduced August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 49/59

  61. Selected Publications Journal Papers [BM14b] Fábio Borges and Max Mühlhäuser. EPPP4SMS: efficient privacy- preserving protocol for smart metering systems and its simulation using real-world data. IEEE trans. smart grid , 5(6):2701–2708, 2014 Impact Factor 4.334 h5-index 54 [BSM14] Fábio Borges, Raqueline A. M. Santos, and Franklin L. Marquezino. Preserving privacy in a smart grid scenario using quantum mechan- ics. Security and communication networks :n/a–n/a, 2014 Impact Factor 0.433 h5-index 19 [LBPN12] Pedro Lara, Fábio Borges, Renato Portugal, and Nadia Nedjah. Par- allel modular exponentiation using load balancing without precom- putation. Journal of computer and system sciences , 78(2):575– 582, 2012 Impact Factor 1.091 h5-index 30 August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 50/59

  62. Selected Publications Award [BBM14] Fábio Borges, Johannes Buchmann, and Max Mühlhäuser. Introducing asymmetric dc-nets. In Communications and network security (CNS), 2014 IEEE conference on , 2014, pages 508–509 Best Poster Award - IEEE Communications Society August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 51/59

  63. Selected Publications Conference Papers [BBM14] Fábio Borges, Johannes Buchmann, and Max Mühlhäuser. Introducing asymmetric dc-nets. In Communications and network security (CNS), 2014 IEEE conference on , 2014, pages 508–509 [BM14a] Fábio Borges and Leonardo A. Martucci. iKUP keeps users’ privacy in the smart grid. In Communications and network security (CNS), 2014 IEEE conference on , 2014, pages 310–318 [BDBBM14] Fábio Borges, Denise Demirel, Leon Böck, Johannes Buchmann, and Max Mühlhäuser. A privacy- enhancing protocol that provides in-network data aggregation and verifiable smart meter billing. In Computers and communication (ISCC), 2014 IEEE symposium on , 2014, pages 1–6 [BMBM14] Fábio Borges, Leonardo A. Martucci, Filipe Beato, and Max Mühlhäuser. Secure and privacy- friendly public key generation and certification. In Trust, security and privacy in computing and communications (TrustCom), 2014 IEEE 13th international conference on , 2014, pages 114–121 [BMM12] Fábio Borges, Leonardo A. Martucci, and Max Mühlhäuser. Analysis of privacy-enhancing pro- tocols based on anonymity networks. In Smart grid communications (SmartGridComm), 2012 IEEE third international conference on , 2012, pages 378–383 [BPP12] Fábio Borges, Albrecht Petzoldt, and Renato Portugal. Small private keys for systems of mul- tivariate quadratic equations using symmetric cryptography. In XXXIV CNMAC - congrasso nacional de matemática aplicada e computacional . Águas de Lindóia - SP, 2012, pages 1085– 1091 [BVM15] Fábio Borges, Florian Volk, and Max Mühlhäuser. Efficient, verifiable, secure, and privacy-friendly computations for the smart grid. In Innovative smart grid technologies conference (ISGT), 2015 IEEE power energy society , 2015, pages 1–5 August 31, 2015 – LNCC – CSR – Pós – TU Darmstadt – FB – 52/59

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend