on multivariate multi resolution analysis using
play

On multivariate Multi-Resolution Analysis, using generalized (non - PowerPoint PPT Presentation

MAIA conference Erice (Italy), September 26, 2013 On multivariate Multi-Resolution Analysis, using generalized (non homogeneous) polyharmonic splines or: A way for deriving RBF and associated MRA Christophe Rabut , Mira Bozzini and Milvia


  1. MAIA conference Erice (Italy), September 26, 2013 On multivariate Multi-Resolution Analysis, using generalized (non homogeneous) polyharmonic splines or: A way for deriving RBF and associated MRA Christophe Rabut ∗ , Mira Bozzini and Milvia Rossini University of Toulouse (INSA ; IMT, IREM, MAIAA), France 1. Some known tools... using Fourier Transform 2. Extension of polyharmonic splines, and associated MRA 1

  2. Part 1: Some known tools... using Fourier Transform 2

  3. A word on (odd degree) polynomial splines Definition: � R( f ( m ) ( x )) 2 dx σ m = Argmin ∀ i ∈ [1: n ] , f ( x i )= y i I i =1: n λ i | x − x i | 2 m − 1 + p m − 1 ( x ) � = ⇒ σ m ( x ) = � with ∀ q ∈ I P m − 1 , i =1: n λ i q ( x i ) = 0 and p m − 1 ∈ I P m − 1 1 2( m !) | x | 2 m − 1 “Radial basis functions”: writing u m ( x ) = � σ m ( x ) = i =1: n µ i u m ( x − x i ) + q m − 1 ( x ) (same constraints on µ and q m − 1 ) Derivative and Fourier Transform: 1 E ( u m ) := ( − 1) m u (2 m ) = Dirac u m ( ω ) = � m ω 2 m 3

  4. ... and on associated functions ϕ m ( ω ) = | sin ω | 2 m ϕ m = ( − 1) m δ 2 m u m “Basic spline”, or “B-spline”: � | ω | 2 m “Lagrangian spline”, or “L-spline”: L m (0) = 1 ; ∀ j ∈ Z Z \{ 0 } , L m ( j ) = 0 � � L m = Z L m ( j/ 2) L m (2 • − j ) ; ϕ m = Z ϕ m ( j ) L m ( • − j ) j ∈ Z j ∈ Z ω − 2 m ϕ m ( ω ) ϕ m ( ω ) � � � L m ( ω ) = ϕ m ( ω − 2 πℓ ) = Z ϕ m ( j ) exp( − i j ω ) = � � � Z ( ω − 2 πℓ ) − 2 m � ℓ ∈ Z Z j ∈ Z ℓ ∈ Z ψ m = ( − 1) m D 2 m L 2 m Semi-orthogonal wavelet: (to be normalized) ω − 2 m ψ m ( ω ) = ω 2 m � � L 2 m ( ω ) = � Z ( ω − 2 πℓ ) − 4 m ℓ ∈ Z ω − 2 m � ψ ( ω ) � ψ ⊥ ( ω ) = Orthogonal wavelet: ψ ( | ω − 2 πℓ | )) 2 = � � � � � Z ( ω − 2 πℓ ) − 4 m � � � � Z ( � � � ℓ ∈ Z ℓ ∈ Z 4

  5. Linear case B-spline L-spline psi-spline function B ; norm(B) = 0.408 function L ; norm(L) = 0.41 function psi ; norm(psi) = 1 1 3 1 0.9 2.5 0.8 0.8 2 0.7 1.5 0.6 0.6 1 0.5 0.4 0.5 0.4 0 0.2 0.3 −0.5 0.2 0 −1 0.1 −1.5 0 −0.2 −3 −2 −1 0 1 2 3 −5 −4 −3 −2 −1 0 1 2 3 4 5 −5 −4 −3 −2 −1 0 1 2 3 4 5 κ = (0 ) ; γ = (1 ) ; κ = (0 ) ; γ = (1 ) ; κ = (0 ) ; γ = (1 ) ; psi-ortho psi-hat psi-ortho-hat function psi ortho function psi ortho ; norm(psi ortho ) = 1 function psi hat hat 12 1 3.5 0.9 3 10 0.8 2.5 0.7 8 2 0.6 6 0.5 1.5 0.4 1 4 0.3 0.5 0.2 2 0 0.1 0 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 −30 −20 −10 0 10 20 30 −30 −20 −10 0 10 20 30 κ = (0 ) ; γ = (1 ) ; κ = (0 ) ; γ = (1 ) ; κ = (0 ) ; γ = (1 ) ; 5

  6. 6

  7. Cubic case B-spline L-spline psi-spline function B ; norm(B) = 0.346 function L ; norm(L) = 0.467 function psi ; norm(psi) = 1 1 2 0.6 1.5 0.8 0.5 1 0.6 0.4 0.5 0.4 0.3 0 −0.5 0.2 0.2 −1 0.1 0 −1.5 0 −0.2 −3 −2 −1 0 1 2 3 −5 −4 −3 −2 −1 0 1 2 3 4 5 −5 −4 −3 −2 −1 0 1 2 3 4 5 κ = (0 0 ) ; γ = (1 1 ) ; κ = (0 0 ) ; γ = (1 1 ) ; κ = (0 0 ) ; γ = (1 1 ) ; psi-ortho psi-hat psi-ortho-hat function psi ortho function psi ortho ; norm(psi ortho ) = 1 function psi hat hat 600 1 3 0.9 2.5 500 0.8 2 0.7 400 0.6 1.5 300 0.5 1 0.4 200 0.3 0.5 0.2 100 0 0.1 −0.5 0 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 −30 −20 −10 0 10 20 30 −30 −20 −10 0 10 20 30 κ = (0 0 ) ; γ = (1 1 ) ; κ = (0 0 ) ; γ = (1 1 ) ; κ = (0 0 ) ; γ = (1 1 ) ; 7

  8. 8

  9. Use of the associated functions (translation invariant spaces) � y is defined by � y ( ω ) = Z y j exp( − i j ω ). � j ∈ Z B-spline approximation of vector y : (or of points P j for B-spline curve) � σ m = Z y j ϕ m ( • − j ) ⇐ ⇒ σ = � y � ϕ m . � j ∈ Z Interpolating spline of vector y : (or P j instead of y j for interpolating spline curve) � σ m = Z y j L m ( • − j ) j ∈ Z � σ = � y L . � Wavelet decomposition of some f ∈ L 2 ( I R ) : Z ( f , ψ ⊥ (2 ℓ • − j )) ψ ⊥ (2 ℓ • − j ) � � f = j ∈ Z Z ℓ ∈ Z ( f , ψ ⊥ (2 ℓ • − j )) = 2 − ℓ exp( i 2 − ℓ j ) ( ψ ⊥ (2 − ℓ • ) � � f , 9

  10. Spline under tension Definition and Fourier transform � R( f ( m ) ( x )) 2 dx + ρ 2 � R( f ( k ) ( x )) 2 dx σ m,k = Argmin ∀ i ∈ Z (say k < m ) I I Z , f ( x i )= y i 1 E ρ ( u ) := ( − 1) m D 2 m u + ( − 1) k ρ 2 D 2 k u = Dirac ; u ρ ( ω ) = � ω 2 m + ρ 2 ω 2 k ϕ ρ ( ω ) = sin 2 m ω + ρ 2 sin 2 k ω ( ω 2 m + ρ 2 ω 2 k ) − 1 � L ρ ( ω ) = � ω 2 m + ρ 2 ω 2 k � � − 1 ( ω − 2 πℓ ) 2 m + ρ 2 ( ω − 2 πℓ ) 2 k � ℓ ∈ Z Z � � − 1 ω 2 m + ρ 2 ω 2 k ψ ρ ( ω ) = ω 2 m � ρ ( ω ) + ρ 2 ω 2 k � � L 2 L 2 ρ ( ω ) = � � − 2 ( ω − 2 πℓ ) 2 m + ρ 2 ( ω − 2 πℓ ) 2 k � ℓ ∈ Z Z � � − 1 ω 2 m + ρ 2 ω 2 k � ψ ⊥ ρ ( ω ) = � � Z (( ω − 2 πℓ ) 2 m + ρ 2 ( ω − 2 πℓ ) 2 k ) − 2 � � � � ℓ ∈ Z 10

  11. Tension splines (linear-cubic) B-spline L-spline psi-spline function B ; norm(B) = 0.346 0.375 0.398 0.407 function L ; norm(L) = 0.467 0.461 0.442 0.422 function psi ; norm(psi) = 1 1 1 1 3 0.9 1 2.5 0.8 2 0.8 0.7 1.5 0.6 0.6 1 0.5 0.5 0.4 0.4 0 0.3 0.2 −0.5 0.2 −1 0 0.1 −1.5 0 −0.2 −3 −2 −1 0 1 2 3 −5 −4 −3 −2 −1 0 1 2 3 4 5 −5 −4 −3 −2 −1 0 1 2 3 4 5 κ = (0 0 ) ; (0 1 ) ; (0 3 ) ; (0 10 ) ; γ = (1 1 ) ; (1 1 ) ; (1 1 ) ; (1 1 ) ; κ = (0 0 ) ; (0 1 ) ; (0 3 ) ; (0 10 ) ; γ = (1 1 ) ; (1 1 ) ; (1 1 ) ; (1 1 ) ; κ = (0 0 ) ; (0 1 ) ; (0 3 ) ; (0 10 ) ; γ = (1 1 ) ; (1 1 ) ; (1 1 ) ; (1 1 ) ; psi-ortho psi-hat psi-ortho-hat function psi ortho function psi hat function psi ortho ; norm(psi ortho ) = 1 1 1 1 hat 1800 1 3 0.9 1600 0.8 2.5 1400 0.7 1200 2 0.6 1000 1.5 0.5 800 0.4 1 600 0.3 0.5 400 0.2 0 200 0.1 −0.5 0 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 −30 −20 −10 0 10 20 30 −30 −20 −10 0 10 20 30 κ = (0 0 ) ; (0 1 ) ; (0 3 ) ; (0 10 ) ; γ = (1 1 ) ; (1 1 ) ; (1 1 ) ; (1 1 ) ; κ = (0 0 ) ; (0 1 ) ; (0 3 ) ; (0 10 ) ; γ = (1 1 ) ; (1 1 ) ; (1 1 ) ; (1 1 ) ; κ = (0 0 ) ; (0 1 ) ; (0 3 ) ; (0 10 ) ; γ = (1 1 ) ; (1 1 ) ; (1 1 ) ; (1 1 ) ; 11

  12. 12

  13. Tension splines (cubic-quintic) B-spline L-spline psi-spline function B ; norm(B) = 0.314 0.332 0.343 0.346 function L ; norm(L) = 0.479 0.477 0.471 0.468 function psi ; norm(psi) = 1 1 1 1 2 1 0.6 1.5 0.8 0.5 1 0.6 0.4 0.5 0.4 0.3 0 −0.5 0.2 0.2 −1 0.1 0 −1.5 0 −0.2 −3 −2 −1 0 1 2 3 −5 −4 −3 −2 −1 0 1 2 3 4 5 −5 −4 −3 −2 −1 0 1 2 3 4 5 κ = (0 0 0 ) ; (0 0 1 ) ; (0 0 3 ) ; (0 0 10 ) ; γ = (1 1 1 ) ; (1 1 1 ) ; (1 1 1 ) ; (1 1 1 ) ; κ = (0 0 0 ) ; (0 0 1 ) ; (0 0 3 ) ; (0 0 10 ) ; γ = (1 1 1 ) ; (1 1 1 ) ; (1 1 1 ) ; (1 1 1 ) ; κ = (0 0 0 ) ; (0 0 1 ) ; (0 0 3 ) ; (0 0 10 ) ; γ = (1 1 1 ) ; (1 1 1 ) ; (1 1 1 ) ; (1 1 1 ) ; psi-ortho psi-hat psi-ortho-hat function psi ortho function psi hat function psi ortho ; norm(psi ortho ) = 1 1 1 1 4 hat x 10 7 1.4 3 6 1.2 2.5 5 1 2 1.5 4 0.8 1 3 0.6 0.5 2 0.4 0 1 0.2 −0.5 0 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 −30 −20 −10 0 10 20 30 −30 −20 −10 0 10 20 30 κ = (0 0 0 ) ; (0 0 1 ) ; (0 0 3 ) ; (0 0 10 ) ; γ = (1 1 1 ) ; (1 1 1 ) ; (1 1 1 ) ; (1 1 1 ) ; κ = (0 0 0 ) ; (0 0 1 ) ; (0 0 3 ) ; (0 0 10 ) ; γ = (1 1 1 ) ; (1 1 1 ) ; (1 1 1 ) ; (1 1 1 ) ; κ = (0 0 0 ) ; (0 0 1 ) ; (0 0 3 ) ; (0 0 10 ) ; γ = (1 1 1 ) ; (1 1 1 ) ; (1 1 1 ) ; (1 1 1 ) ; 13

  14. 14

  15. Fractional splines Definition and Fourier transform Let s ∈ [0 .. 1) and m ∈ I N such that α := m + s > d/ 2 � R( f ( α ) ( x )) 2 dx σ α = Argmin ∀ i ∈ [1: n ] , f ( x i )= y i I � 2 dω � � R ( ω 2 ) s F ( f ( m ) ( ω ) = Argmin ∀ i ∈ [1: n ] , f ( x i )= y i I 1 E α ( u α ) := ( − 1) ⌊ α ⌋ D 2 α u α = Dirac ; u α ( ω ) = � ( ω 2 ) α u α ( x ) = c α | x | 2 α − 1 if 2 α − 1 is not an even integer number. u α ( x ) = c α | x | 2 α − 1 ln x 2 if 2 α − 1 is an even integer number. ( c α is some known real valued constant) They too are in some place between order 1 (linear) and order 2 (cubic) splines, but are different from splines under tension.  sin 2 ω   α   B-spline : ϕ α ( ω ) =   �  ω 2 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend