neutron discrimination using waveform information
play

Neutron discrimination using waveform information. Yasuyuki - PowerPoint PPT Presentation

1 Neutron discrimination using waveform information. Yasuyuki Sugiyama (Yamanaka Taku Lab.) Year-end annual report. 2015 Dec. 25(Fri) 2 d T J-PARC KOTO Exp. O K calorimeter measures the s the K 0 L 0 deca


  1. 1 Neutron discrimination using waveform information. Yasuyuki Sugiyama � (Yamanaka Taku Lab.) Year-end annual report. � 2015 Dec. 25(Fri)

  2. 2 d T J-PARC KOTO Exp. O ν K calorimeter measures the s ν the K 0 L → π 0 νν deca • search for 
 CsI calorimeter KOTODetector (B.R.= 2.4x10 -11 @S.M.) 
 FB NCC MB CV CC04 CC05 CC06 BHCV of 576 pure CsI crystals. @J-PARC • Strategy π 0 → 2 γ measures K L • Detect by π 0 ν ν ν measuring 2 γ on CsI pure CsI Calorimeter. BCV LCV OEV CC03 HINEMOS • Require P t π 0 >0 
 500 [MeV/c] 450 with no other particle. :Signal 
 400 t P 0 350 � reconstructed Box • First physics run in 
 300 250 2013 May. 200 150 100 • More physics run in 2015 50 Spring, Autumn. 0 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 0 reconstructed vertexZ [mm] �

  3. つくりなお 3 KOTO CsI Calorimeter measures π 0 ν • measure γ to reconstruct from K L decay. � pure CsI • Use 2716 Un-doped CsI crystals from KTeV � • Waveform is recorded by 125MHz ADC with Bessel Filter Pulse Height [ADC counts] 950 500mm 900 (27X 0 ) 850 800 750 700 650 600 550 2.5cm □ 500 5cm □ 0 5 10 15 20 25 30 35 40 45 50 55 60 65 Time[Clock=8ns] CsI Crystal waveform recorded by ADC KOTO CsI Calorimeter

  4. 4 日金曜日 月 Opened the signal box 年 Expected Observed 1 0.36± 0.16 Neutron Background • Single neutron (1~2GeV) hits on CsI Calorimeter may cause Background events. � • considered to be dominant in the first physics run. � • Need a new method to distinguish neutrons from photons. Analysis Result for 2013 Physics Run • N obs =1, N exp =0.36±0.16 500 4 [MeV/c] 450 3.5 400 3 350 t P 2.5 CsI neutron 300 250 2 neutron 200 1.5 150 CsI 1 100 0.5 50 0 0 2000 3000 4000 5000 6000 31 Rec. z [mm] from K.Shiomi’s talk in JPS 2014 Autumn

  5. 5 CsI Calorimeter CsI Calorimeter How to reject Neutron Background? • Current Cut Methods use the transverse shower shape. � • Longitudinal characteristics or Timing structure of Hadron Shower may be new point of view to reject the background. � • These characteristics may affect pulse shape. Y Y Smaller Size 
 Larger Size 
 of Cluster of Cluster X X Gamma Neutron Z Shower exists 
 Shower only in Upstream also in Downstream

  6. 6 Fitting waveform with Asymmetric gaussian. • Pulse shape of CsI calorimeter has Gaussian-shape due to Bessel Filter in ADC module. � • Fit waveform with “asymmetric Gaussian” to get information about the change of pulse shape. � • Larger tail component will make “a” bigger. Pulse fitted by Asymmetric Gaussian Pulse Height [ADC counts] 950 900 Asymmetric Gaussian: 850 800 − ( t − t 0 ) 2 ✓ ◆ 750 A ( t ) = | A | exp , 2 σ ( t ) 2 700 650 σ ( t ) = σ 0 + a ( t − t 0 ) 600 550 500 0 5 10 15 20 25 30 35 40 45 50 55 60 65 Time [Clock = 8ns]

  7. 7 Procedure • Check the difference of fit parameters from Gamma’s waveform � • Make Template of waveform parameters for Gamma events � • Compare acquired fit parameters ( p fit ) with Template( p exp (H) ). � fit 
 template • Calculate χ 2 value for γ and π 0 result ! 2 crystal p fit − p exp χ 2 1 ( H i ) X X i i γ NDF = 2 N Crystal σ p i ( H i ) p = σ 0 ,a i Precision H i : Pulseheight of i th crystal χ 2 χ 2 χ 2 NDF = 1 X π 0 γ i γ NDF γ i 2 γ i

  8. 8 Fit parameter Template • Make templates of fit parameter from K L ->3 π 0 events taken in 2013 Physics Run. � • Get Profile (Mean values) p exp (H) and Its RMS σ p (H). � • Use TSpline for interpolation between bins. h_asym_height_0 0.3 Asymmetric Parameter 350 0.25 300 0.2 σ p (H) 250 0.15 p exp (H) 200 0.1 150 0.05 100 0 -0.05 50 -0.1 0 1.5 2 2.5 3 3.5 4 Log10(Pulse Height)[ADC count]

  9. 9 0 in KL->3 π 0 events χ 2/NDF for each γ , π • Calculate χ 2/NDF for each γ clusters on the CsI Calorimeter and π 0 . � • γ ’s χ 2/NDF distributes around 1 and has small Energy dependence. � • π 0 ’s χ 2/NDF distributes around 1. asym chi2 for gamma vs GammaE Pi0_AsymChi2 {Iteration$<3} 5 h1 h1 4 10 � 50000 Entries Entries 631302 631302 /NDF for Threshold 4.5 Mean Mean 0.9621 0.9621 RMS RMS 0.3378 0.3378 4 40000 3 10 3.5 2 � 3 30000 2.5 2 10 Cut 2 20000 1.5 5% 
 10 1 10000 loss 0.5 0 0 1 0 500 1000 1500 2000 2500 3000 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 Gamma Energy [MeV] 2/NDF for � � X: χ 2 /NDF of π 0 small E dependence

  10. 10 Analysis for Neutron-rich data • Data taken with Inserting Aluminum target during 2015 April/May Run � • Only neutrons can arrive at Calorimeter from Aluminum target. � • Analyze events with 2 clusters on the CsI Calorimeter � • Apply all cuts used in 1st Physics Run (2013) Analysis 
 except for Transverse Cluster Shape Cut. All cut except for 
 Transverse Pulse Shape Cut CsI calorimeter h_PtZ_cut h_PtZ_cut 500 7 Pt[MeV/c] Entries Entries 1915 1915 FB NCC MB CV CC Mean x Mean x 4810 4810 450 Mean y Mean y 221.9 221.9 6 RMS x RMS x 438.2 438.2 400 RMS y RMS y 64.09 64.09 0 5 350 � 300 4 250 3 200 150 2 t=10mm 
 100 Al Target 1 50 BCV LCV OEV CC03 HINEMOS 0 0 3000 3500 4000 4500 5000 5500 6000 0 reconstructed Z vertex[mm] �

  11. 75% 11 0 with gamma template χ 2/NDF of Rec. π • neutron-like events in Al target data have big χ 2/NDF. � • K L ->3 π 0 data distribute around 1. � • if we reject events with χ 2/NDF>1.5, 
 75% of neutron-like events can be rejected with 5% loss for π 0 ->2 γ χ 2/NDF( γ ) Chi2/NDF for Pi0 with gamma template Chi2/NDF for Pi0 with gamma template h_chi2_pi_gamma 180 5 � Entries 5523 Entries Entries 3830 3830 2/NDF for 14 Mean x Mean x 511.3 511.3 4.5 160 Mean 1.974 Mean y Mean y 1.822 1.822 RMS x RMS x 268.6 268.6 RMS 0.897 4 12 140 RMS y RMS y 1.009 1.009 Al target with 
 3.5 � 120 10 3 all cut except 
 100 8 2.5 80 for ClusterShape 2 6 60 1.5 4 40 1 2 20 0.5 0 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 500 1000 1500 2000 2500 3000 χ 2/NDF Energy[MeV] � X:Energy[MeV]

  12. 12 Likelihood ratio signal MC (from downstream) ← background (from upstream) signal → backward π 0 Template of neutron-like events • Make template of fitting parameters using Al target run data only with Veto Cut. � • Use only a half of data to make template 
 and use another half of data to estimate performance. � • Calculate Chi2/NDF as same as the case with 6gamma template. � • Calculate Likelihood for 6gamma template and Z0Al template and determine which template is more closer to data. par . ch . γ ijk | s exp . � � � Gaussian( s obs . L n = ijkn , σ k ( e ij )) , i =0 , 1 j k =0 , 1

  13. 13 Pulse shape Difference in each crystal • Template difference become larger 
 in Pulse Height >~500count (~50MeV). � • χ 2/NDF difference in KL->3pi0 data 
 becomes larger for E deposit > 50MeV/crystal. χ 2/NDF(Al target template) 
 Template for CsI Ch.800 - χ 2/NDF(3pi0 template) asym.par GamClusCsi_AsymChi2_Al-GamClusCsi_AsymChi2:GamClusCsiE {GamClusCsiE>3} h1 h1 4 Entries Entries 653839 653839 Mean x Mean x 32.14 32.14 Mean y -0.009284 Mean y -0.009284 Al target 
 3 4 10 RMS x RMS x 60.63 60.63 RMS y RMS y 0.6891 0.6891 2 3pi0 3 10 1 0 2 10 -1 -2 10 -3 1 log10(PulseHeight) 0 50 100 150 200 250 300 350 400 450 500 Energy in CsI crystal[MeV]

  14. 14 Likelihood ratio backward π 0 signal MC (from downstream) ← background (from upstream) signal → Chi2/NDF for limited number of channel • Calculate chi2/NDF and Likelihood ratio only with information from channels with Edep >50MeV. � • If #(CsI with Edep>50MeV) is 0, use Chi2 and Likelihood of the CsI Crystal with Maximum Edep. fit 
 template result ! 2 crystal p fit − p exp χ 2 1 ( H i ) X X i i γ NDF = 2 N Crystal σ p i ( H i ) p = σ 0 ,a i Precision H i : Pulseheight of i th crystal χ 2 χ 2 χ 2 NDF = 1 X π 0 γ i γ NDF γ i 2 γ i par . ch . γ ijk | s exp . � � � Gaussian( s obs . L n = ijkn , σ k ( e ij )) , i =0 , 1 j k =0 , 1

  15. 15 Al target data broad narrow narrow broad KL->3π 0 data χ 2/NDF distribution with 50MeV threshold/Crystal Chi2/NDF for Pi0 with gamma template Chi2/NDF for Pi0 with gamma template Chi2/NDF for Pi0 with gamma template Chi2/NDF for Pi0 with gamma template 3 10 × h_chi2_pi_gamma h_chi2_pi_gamma 80 Entries 5523 Entries 1.158191e+07 Mean 2.49 500 Mean 0.8097 70 RMS 1.217 RMS 0.5906 60 400 3 π 0 
 50 300 40 template 30 200 20 100 10 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Chi2/NDF for Pi0 with Z0Al template Chi2/NDF for Pi0 with Z0Al template Chi2/NDF for Pi0 with Z0Al template Chi2/NDF for Pi0 with Z0Al template 3 10 h_chi2_pi_al × h_chi2_pi_al 350 Entries 1.158191e+07 Entries 5523 Mean 1.287 250 300 Mean 0.9017 RMS 0.8414 RMS 0.5917 250 200 Al target 
 200 150 template 150 100 100 50 50 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend