on highly efficient methods for pricing options with and
play

On Highly Efficient Methods for Pricing Options with and without - PowerPoint PPT Presentation

On Highly Efficient Methods for Pricing Options with and without Early Exercise Cornelis W. Oosterlee 1 , 2 , Fang Fang 2 1 CWI, Center for Mathematics and Computer Science, Amsterdam, 2 Delft University of Technology, Delft. Linz, Semester on


  1. On Highly Efficient Methods for Pricing Options with and without Early Exercise Cornelis W. Oosterlee 1 , 2 , Fang Fang 2 1 CWI, Center for Mathematics and Computer Science, Amsterdam, 2 Delft University of Technology, Delft. Linz, Semester on Finance, November 2008 C.W.Oosterlee (CWI) The COS Method Linz 1 / 42

  2. Contents Brief overview of derivative pricing Our contribution: The COS method: ◮ Efficient way to recover the density function; ◮ Efficient alternative for FFT-based methods for calibration; ◮ Focus on L´ evy processes and Heston stochastic volatility COS method for European options Bermudan and discretely-monitored barrier options Credit Default Swaps C.W.Oosterlee (CWI) The COS Method Linz 2 / 42

  3. Multi-D asset prices Asset price, S i , can be modeled by geometric Brownian motion: dS i ( t ) = µ i S i ( t ) dt + σ i S i dW i ( t ) , with W i ( t ) Wiener process, µ i drift, σ i volatility. ⇒ Itˆ o’s Lemma: multi-D Black-Scholes equation: (for a European option) d d ∂ 2 V ∂ V ∂ t + 1 ∂ V � � [ σ i σ j ρ i , j S i S j ] + [ rS i ] − rV = 0 . 2 ∂ S i ∂ S j ∂ S i i , j =1 i =1 Correlation between a pair of assets, S i and S j , is ρ i , j . C.W.Oosterlee (CWI) The COS Method Linz 3 / 42

  4. Pricing: Feynman-Kac Theorem Given the system of stochastic differential equations: dS i ( t ) = rS i ( t ) dt + σ i S i dW i ( t ) with E { dW i ( t ) dW j ( t ) } = ρ ij dt and an option, V , such that V ( S , t ) = e − r ( T − t ) E Q { V ( S ( T ) , T ) | S ( t ) } with the sum of the first derivatives of the option square integrable. Then the value, V ( S ( t ) , t ), is the unique solution of the final condition problem  i , j =1 [ σ i σ j ρ i , j S i S j ∂ 2 V ∂ V 1 i =1 [ rS i ∂ V � d ∂ S i ∂ S j ] + � d + ∂ S i ] − rV = 0 ,  2 ∂ t V ( S , T ) = given  C.W.Oosterlee (CWI) The COS Method Linz 4 / 42

  5. Numerical Pricing Approach One can apply several numerical techniques to calculate the option price: ◮ Numerical integration, ◮ Monte Carlo simulation, ◮ Numerical solution of the partial-(integro) differential equation (P(I)DE) Each of these methods has its merits and demerits. Numerical challenges: ◮ The problem’s dimensionality ◮ Speed of solution methods ◮ Early exercise feature (P(I)DE → free boundary problem) C.W.Oosterlee (CWI) The COS Method Linz 5 / 42

  6. L´ evy Processes Use Heston’s model, or a L´ evy process with jumps, to better fit market data, and allow for smile effects A L´ evy process is a stochastic process that starts at 0 and has independent and stationary increments. The L´ evy processes of our interest here include ◮ The CGMY model (generalized VG model; driven by four parameters); ◮ The Normal Inverse Gaussian (NIG) model (a variance-mean mixture of a Gaussian distribution with an inverse Gaussian; driven by four parameters). C.W.Oosterlee (CWI) The COS Method Linz 6 / 42

  7. Motivation Our motivation: To derive pricing methods that ◮ are computationally fast ◮ are not restricted to Gaussian-based models ◮ should work as long as we have a characteristic function, Z ∞ Z ∞ e i ω x f ( x ) dx ; f ( x ) = 1 Re ( φ ( ω ) e − i ω x ) d ω φ ( ω ) = π 0 −∞ ◮ Preferably faster than approaches based on the FFT The characteristic function of a L´ evy process equals: exp ( t ( i µω − 1 � 2 σ 2 ω 2 + ( e i ω x − 1 − i ω x 1 [ | x | < 1] ν ( dx ))) , φ ( ω ) = I R the celebrated L´ evy-Khinchine formula. C.W.Oosterlee (CWI) The COS Method Linz 7 / 42

  8. Fourier-Cosine Expansion The COS method: ◮ Exponential convergence; ◮ Greeks are obtained at no additional cost. ◮ For discretely-monitored barrier and Bermudan options as well; The basic idea: ◮ Replace the density by its Fourier-cosine series expansion; ◮ Series coefficients have simple relation with characteristic function. C.W.Oosterlee (CWI) The COS Method Linz 8 / 42

  9. Series Coefficients of the Density and the Ch.F. Fourier-Cosine expansion of density function on interval [ a , b ]: � ′∞ � � n π x − a f ( x ) = n =0 F n cos , b − a with x ∈ [ a , b ] ⊂ R and the coefficients defined as � b 2 � n π x − a � F n := f ( x ) cos dx . b − a b − a a R f ( x ) e i ω x dx ( � F n has direct relation to ch.f., φ ( ω ) := � R \ [ a , b ] f ( x ) ≈ 0), 2 � n π x − a � � F n ≈ A n := f ( x ) cos dx b − a b − a R � n π 2 � � � − i ka π �� = φ exp . b − a Re b − a b − a C.W.Oosterlee (CWI) The COS Method Linz 9 / 42

  10. Recovering Densities Replace F n by A n , and truncate the summation: � n π � ′ N − 1 � � � �� � � 2 in π − a n π x − a f ( x ) ≈ φ b − a ; x exp cos , n =0 Re b − a b − a b − a 2 x 2 , [ a , b ] = [ − 10 , 10] and x = {− 5 , − 4 , · · · , 4 , 5 } . 2 π e − 1 1 Example: f ( x ) = √ N 4 8 16 32 64 error 0.2538 0.1075 0.0072 4.04e-07 3.33e-16 cpu time (sec.) 0.0025 0.0028 0.0025 0.0031 0.0032 Exponential error convergence in N . C.W.Oosterlee (CWI) The COS Method Linz 10 / 42

  11. Pricing European Options Start from the risk-neutral valuation formula: � v ( x , t 0 ) = e − r ∆ t E Q [ v ( y , T ) | x ] = e − r ∆ t v ( y , T ) f ( y | x ) dy . R Truncate the integration range: � v ( x , t 0 ) = e − r ∆ t v ( y , T ) f ( y | x ) dy + ε. [ a , b ] Replace the density by the COS approximation, and interchange summation and integration: � n π v ( x , t 0 ) = e − r ∆ t � ′ N − 1 � � � a e − in π ˆ φ b − a ; x V n , n =0 Re b − a where the series coefficients of the payoff, V n , are analytic. C.W.Oosterlee (CWI) The COS Method Linz 11 / 42

  12. Pricing European Options Log-asset prices: x := ln( S 0 / K ) and y := ln( S T / K ) , The payoff for European options reads v ( y , T ) ≡ [ α · K ( e y − 1)] + . For a call option, we obtain � b � � 2 k π y − a K ( e y − 1) cos V call = dy k b − a b − a 0 2 = b − aK ( χ k (0 , b ) − ψ k (0 , b )) , For a vanilla put, we find 2 V put = b − aK ( − χ k ( a , 0) + ψ k ( a , 0)) . k C.W.Oosterlee (CWI) The COS Method Linz 12 / 42

  13. Characteristic Functions Heston Model The characteristic function of the log-asset price for Heston’s model: � 1 − e − D ∆ t � � � i ωµ ∆ t + u 0 ϕ hes ( ω ; u 0 ) = exp ( λ − i ρηω − D ) · η 2 1 − Ge − D ∆ t ∆ t ( λ − i ρηω − D ) − 2 log(1 − Ge − D ∆ t � λ ¯ � �� u exp ) , η 2 1 − G ( λ − i ρηω ) 2 + ( ω 2 + i ω ) η 2 G = λ − i ρηω − D � with D = and λ − i ρηω + D . For L´ evy and Heston models, the ChF can be represented by ϕ levy ( ω ) · e i ω x φ ( ω ; x ) = with ϕ levy ( ω ) := φ ( ω ; 0) , ϕ hes ( ω ; u 0 ) · e i ω x , φ ( ω ; x , u 0 ) = C.W.Oosterlee (CWI) The COS Method Linz 13 / 42

  14. Characteristic Functions L´ evy Processes For the CGMY/KoBol model: exp ( i ω ( r − q )∆ t − 1 2 ω 2 σ 2 ∆ t ) · ϕ levy ( ω ) = exp (∆ tC Γ( − Y )[( M − i ω ) Y − M Y + ( G + i ω ) Y − G Y ]) , where Γ( · ) represents the gamma function. The parameters should satisfy C ≥ 0 , G ≥ 0 , M ≥ 0 and Y < 2. The characteristic function of the log-asset price for NIG: � � α 2 − β 2 − α 2 − ( β + i ω ) 2 ) � � ϕ NIG ( ω ) = exp i ωµ + δ ( with α, δ > 0 , β ∈ ( − α, α − 1) C.W.Oosterlee (CWI) The COS Method Linz 14 / 42

  15. Heston Model We can present the V k as V k = U k K , where 2 � b − a ( χ k (0 , b ) − ψ k (0 , b )) for a call U k = 2 b − a ( − χ k ( a , 0) + ψ k ( a , 0)) for a put . The pricing formula simplifies for Heston and L´ evy processes: � n π �� ′ N − 1 � � v ( x , t 0 ) ≈ K e − r ∆ t · Re U n · e in π x − a n =0 ϕ , b − a b − a where ϕ ( ω ) := φ ( ω ; 0) C.W.Oosterlee (CWI) The COS Method Linz 15 / 42

  16. Numerical Results Pricing for 21 strikes K = 50 , 55 , 60 , · · · , 150 under Heston’s model. Other parameters: S 0 = 100 , r = 0 , q = 0 , T = 1 , λ = 1 . 5768 , η = 0 . 5751 , ¯ u = 0 . 0398 , u 0 = 0 . 0175 , ρ = − 0 . 5711 . 96 128 160 N COS (msec.) 2.039 2.641 3 . 220 max. abs. err. 4.52e-04 2.61e-05 4 . 40 e − 06 N 2048 4096 8192 Carr-Madan (msec.) 20.36 37 . 69 76.02 max. abs. error 2.61e-01 2 . 15 e − 03 2.08e-07 Error analysis for the COS method is provided in the paper. C.W.Oosterlee (CWI) The COS Method Linz 16 / 42

  17. Numerical Results within Calibration Calibration for Heston’s model: Around 10 times faster than Carr-Madan. C.W.Oosterlee (CWI) The COS Method Linz 17 / 42

  18. Pricing Bermudan Options 0 m m+1 M s s 0 K � � � � 0 T t ������� ������� The pricing formulae e − r ∆ t � � c ( x , t m ) = R v ( y , t m +1 ) f ( y | x ) dy v ( x , t m ) = max ( g ( x , t m ) , c ( x , t m )) and v ( x , t 0 ) = e − r ∆ t � R v ( y , t 1 ) f ( y | x ) dy . ◮ Use Newton’s method to locate the early exercise point x ∗ m , which is the root of g ( x , t m ) − c ( x , t m ) = 0 . ◮ Recover V n ( t 1 ) recursively from V n ( t M ), V n ( t M − 1 ) , · · · , V n ( t 2 ). ◮ Use the COS formula for v ( x , t 0 ). C.W.Oosterlee (CWI) The COS Method Linz 18 / 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend