obtaining a nonzero 13 in lepton models based on so 3 a 4
play

Obtaining a nonzero 13 in lepton models based on SO(3) A 4 Yuval - PowerPoint PPT Presentation

Obtaining a nonzero 13 in lepton models based on SO(3) A 4 Yuval Grossman and Wee Hao Ng , Cornell University arXiv:1404.1413 [hep-ph] Phenomenology 2014 1 Outline Tri-bimaximal mixing found and lost; how do A 4 models cope?


  1. Obtaining a nonzero  13 in lepton models based on SO(3)  A 4 Yuval Grossman and Wee Hao Ng , Cornell University arXiv:1404.1413 [hep-ph] Phenomenology 2014 1

  2. Outline • Tri-bimaximal mixing found and lost; how do A 4 models cope? • Basics of SO(3)  A 4 model • Nonzero  13 in SO(3)  A 4 model • Summary 2

  3. Tri-bimaximal mixing and A 4 models • For long time, PMNS matrix thought to be consistent with TBM   i δ sin θ e   13 2 1 13   0 3  3    1 1 1     U TBM 6 3 2     1 1 1     6 3 2  • Highly specific pattern… discrete lepton flavor symmetries? 3

  4. Tri-bimaximal mixing and A 4 models • Simplest A 4 lepton models – Components • SM Higgs and leptons • Right handed neutrinos Representations of A 4 • Scalar flavons  ,  ’ – Features • Additional Z 2 symmetry so flavons sectorized • Flavons gain VEV  = (v, v, v),  ’  = (v’, 0, 0)  TBM! 4

  5. Tri-bimaximal mixing… lost • Recently,  13 found to be much larger! • Daya Bay (2012):      2 sin 2 θ 0.092 0.016(stat) 0.005(syst) 13 • RENO (2012):      2 sin 2 θ 0.113 0.013(stat) 0.019(syst) 13 • TBM ruled out! 5

  6. How do A 4 models cope? • Actually many A 4 models already allow this! • Approaches: – Higher dimension operators, e.g. [Altarelli and Meloni (2009)] – More flavons, e.g. [Chen et al (2013)] – Perturb flavon alignments, e.g. [King (2011)] – Radiative corrections, e.g. [Antusch et al (2003)] 6

  7. Continuous symmetry  A 4 • Class of models based on continuous symmetry  A 4 . • Originally motivated to explain origin of A 4 . • Specific example: SO(3)  A 4 [Berger and Grossman (2009)] • Turns out  13 already nonzero at tree level! A4 scale • Even better:  13 related to SO(3) scale 7

  8. Basics of SO(3)  A 4 model Left-handed leptons Right-handed leptons Scalars 8

  9. Basics of SO(3)  A 4 model • Most general Lagrangian for leptons H H H H         a a a b ab T a abc bc 5 ò abc a bd cd L y ψ ψ y ψ ψ y ψ T ψ y ψ ψ l e l e m l m m l m m l 5 m Λ Λ Λ Λ            a a a b ab T a abc bc 5 ò abc a bd cd y ψ ψ y ψ ψ y ψ T ψ y ψ ψ e f e m f m m f m m f 5 m x       ca a ca b c abc a a ν L M ψ ψ ψ ψ T y ψ Hψ ν n n n n ν l n Λ • Flavons gain VEV        v 0 v v v 5 5                   (a b c) T v x y z , v , v 0 v , 0       T 5 5 5         v  v v 0   0  5 5 3D coordinate basis vectors  6  6 mass matrices 9

  10. Obtaining U PMNS • U PMNS characterize charged-current interactions between light eigenstates. • 6  6 mass matrices: – Block-diagonalise 6  6 mass matrices. – Then diagonalise 3  3 mass matrices. • Neutrinos:   2 2 y v    ν H 0 0   M   a 0 0    2 2 2 2 2   y Mv Λ y x v v v Λ    3 3   ν H ν ν H T M 0 , of form 0 b c     ν   2 2 2 2 2 2 2 2 2 2  M Λ x v v M Λ x v v    ν T ν T 0 c b      2 2 2 2 2 y x v v v Λ y Mv Λ    ν ν H T ν H 0       2 2 2 2 2 2 2 2 2 2  M Λ x v v M Λ x v v  ν T ν T 10

  11. Obtaining U PMNS   v v 2 π • Charged leptons: H H A B   i 3     6 6 M ω e Λ Λ  l    C D            5 2 5 2 y v y v y v ( ω ω) y v y v (ω ω )       a b c  e m m 5 m m 5               5 2 5 2 2 2 A y v y v y v ( ω ω) ω y v y v (ω ω ) ω , ofform a b ω c ω         e m m 5 m m 5   2    a b ω c ω          5 2 2 5 2 y v y v y v ( ω ω) ω y v y v (ω ω ) ω       e m m 5 m m 5      T 5 5 y v 2y v y v y v y v m m T m m 5 m 5     T B y v 2y v y v  m m T m      5 T 5 T y v y v y v y v y v y v   m m 5 m T m m 5 m T                5 2 5 2 y v y v y v ( ω ω) y v y v (ω ω )       a b c  e m m 5 m m 5                    5 2 5 2 2 2 C y v y v y v ( ω ω) ω y v y v (ω ω ) ω , ofform a b ω c ω         e m m 5 m m 5   2    a b ω c ω               5 2 2 5 2 y v y v y v ( ω ω) ω y v y v (ω ω ) ω       e m m 5 m m 5           T 5 5 y v 2y v y v y v y v m m T m m 5 m 5        T D y v 2y v y v  m m T m            5 T 5 T y v y v y v y v y v y v   m m 5 m T m m 5 m T 11

  12. Nonzero  13 • Block diagonalize   6 6 6 6 † M (M ) l l 2 v            3 3 3 3 † † † † † † † 1 † † H M (M ) AA BB (AC BD )(CC DD ) (CA DB )   l l 2 Λ • Useful to define    T T E B (y / y )D m m • Then A,C,E~O(v,v ), B,D~O(v ) 5 T • Expanding in small parameter   ò O(v / v )~O(v / v ) T T   – LO: T v y  13 still 0!    3 3 H  m  M A C  l T Λ  y  m   T – NLO: v y Suggests A4 scale      3 3 1 H m M  A C ED C   l T Λ y    13 ~  ! m SO(3) scale 12

  13. Nonzero  13 • Actual contribution to  13 from deviation turns out to be ~ (m  /m  )  ~ 10  • Random simulation results In agreement with predictions! 13

  14. Summary and further work • TBM ruled out, but many A 4 models allow for this scenario • In particular, SO(3)  A 4 model allow nonzero tree-level  13 of size m A4 scale τ ~ m SO(3) scale μ • % level separation of A 4 and SO(3) breaking scales 14

  15. Thank you! 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend