recent progress on a sharp lower bound for first nonzero
play

Recent progress on a sharp lower bound for first (nonzero) Steklov - PowerPoint PPT Presentation

Recent progress on a sharp lower bound for first (nonzero) Steklov eigenvalue Chao Xia (Xiamen University) (joint with Changwei Xiong) Asia-Pacific Analysis and PDE Seminar May 11th, 2020 1 / 30 Table of Contents Review of eigenvalue lower


  1. Recent progress on a sharp lower bound for first (nonzero) Steklov eigenvalue Chao Xia (Xiamen University) (joint with Changwei Xiong) Asia-Pacific Analysis and PDE Seminar May 11th, 2020 1 / 30

  2. Table of Contents Review of eigenvalue lower bound Introduction to Steklov eigenvalue Review of Steklov eigenvalue estimates Our result and proof 2 / 30

  3. Eigenvalue Lower Bound Theorem (Lichernowicz 1958, Obata 1962) Let ( M n , g ) be a closed Riemannian n-manifold with Ric g ≥ ( n − 1) K > 0 . Then λ 1 ( M ) ≥ nK . Equality holds if and only if M ∼ = S n ( 1 K ) . √ λ 1 ( M ) is first (nonzero) eigenvalue of ∆ M . Variational characterization ∫ M |∇ f | 2 λ 1 ( M ) = inf . ∫ M f 2 f ∈ C 1 ( M ) , ∫ M f =0 Maximum principle or Integral method on Bochner’s formula. 3 / 30

  4. Eigenvalue Lower Bound Integral method on Bochner’s formula ∫ ∫ (∆ f ) 2 − |∇ 2 f | 2 = Ric g ( ∇ f , ∇ f ) . M M Using |∇ 2 f | 2 ≥ 1 n (∆ f ) 2 and Ric g ≥ ( n − 1) K > 0, n − 1 ∫ n − 1 ∫ λ 2 1 f 2 (∆ f ) 2 = n n M M ∫ ∫ |∇ f | 2 = ( n − 1) K λ 1 f 2 . ≥ ( n − 1) K M M Equality by Obata’s theorem: A closed Riemannian n -manifold which admits a solution to ∇ 2 f = − Kfg must be S n ( 1 K ). √ 4 / 30

  5. Eigenvalue Lower Bound Theorem Let ( M n , g ) be a compact Riemannian n-manifold with boundary Σ . (Reilly ’77) Assume Ric g ≥ ( n − 1) K > 0 and H Σ ≥ 0 (mean convex boundary). Then λ D 1 ( M ) ≥ nK. (C. Y. Xia ’88, Escobar ’90) Assume Ric g ≥ ( n − 1) K > 0 and h Σ ≥ 0 (convex boundary). Then λ N 1 ( M ) ≥ nK. Equality holds if and only if M ∼ + ( 1 = S n K ) . √ First Dirichlet eigenvalue and Neumann eigenvalue of ∆ M M |∇ f | 2 ∫ λ D 1 ( M ) = inf . ∫ M f 2 f ∈ C 1 ( M ) , f | Σ =0 ∫ M |∇ f | 2 λ N 1 ( M ) = inf . ∫ M f 2 f ∈ C 1 ( M ) , ∫ M f =0 5 / 30

  6. Eigenvalue Lower Bound Theorem (Li-Yau ’80, Zhong-Yang ’84, Hang-Wang ’07) Let ( M n , g ) be a compact Riemannian n-manifold possibly with convex boundary Σ . Assume Ric g ≥ 0 . Then 1 ( M ) ≥ π 2 λ N d 2 , where d = diam ( M ) . Equality holds if and only if M is a 1 -dmensional round circle or a segment. 6 / 30

  7. Eigenvalue Lower Bound Theorem (Li-Yau ’80, Zhong-Yang ’84, Hang-Wang ’07) Let ( M n , g ) be a compact Riemannian n-manifold possibly with convex boundary Σ . Assume Ric g ≥ 0 . Then 1 ( M ) ≥ π 2 λ N d 2 , where d = diam ( M ) . Equality holds if and only if M is a 1 -dmensional round circle or a segment. Theorem (Andrews-Clutterbuck ’11) Let Ω ⊂ R n be a bounded convex domain and λ be the Dirichlet eigenvalues for Schr¨ odinger operator ∆ + V with convex V . Then λ 2 − λ 1 ≥ 3 π 2 d 2 . 3 π 2 d 2 is the spectral gap for 1 -dimensional Laplacian on [ − D 2 , D 2 ] . 6 / 30

  8. Steklov Eigenvalue Let ( M n , g ) be a compact Riemannian n -manifold with boundary Σ. For f ∈ C ∞ (Σ), let ˆ f be its harmonic extension in M , ∆ˆ ˆ f = 0 in M , f = f on Σ . Dirichlet-to-Neumann operator L : C ∞ (Σ) → C ∞ (Σ) �→ ∂ ˆ f f ∂ν . ν is outward unit normal to Σ. L is linear, nonnegative, self-adjoint operator with compact inverse, hence its spectrum is given by 0 = σ 0 < σ 1 ≤ σ 2 ≤ · · · → ∞ . σ i is called Steklov eigenvalues, first considered by Steklov 1900 in Euclidean space. 7 / 30

  9. Steklov Eigenvalue Steklov eigenvalues: ∂ f ∆ f = 0 in M , ∂ν = σ f on Σ . Variational characterization: M |∇ f | 2 ∫ σ 1 ( M ) = inf , ∫ Σ f 2 f ∈ C 1 ( M ) , ∫ Σ f =0 M |∇ f | 2 ∫ σ k ( M ) = inf sup . ∫ Σ f 2 S⊂ C 1 ( M ) , 0 ̸ = f ∈S dim S = k +1 8 / 30

  10. Steklov Eigenvalue Steklov eigenvalues for Euclidean unit disk B 1 ⊂ R 2 : 0 , 1 , 1 , 2 , 2 , · · · , k , k , · · · Corresponding Steklov eigenfunctions: 1 , r cos ϕ, r sin ϕ, · · · , r k cos k ϕ, r k sin k ϕ, · · · Steklov eigenvalues for Euclidean unit ball B 1 ⊂ R n : ( n + k − 1 ) ( n + k − 3 ) k ∈ N with multiplicity − n − 1 n − 1 Corresponding Steklov eigenfunctions: homogeneous harmonic polynomials of degree k . 9 / 30

  11. Lower Bound for Steklov Eigenvalue Payne ’70: M 2 ⊂ R 2 , boundary geodesic curvature k g (Σ) ≥ c > 0 ⇒ σ 1 ≥ c . Equality holds iff M = B 2 ( 1 c ). Escobar ’97: ( M 2 , g ), Gauss curvature K ≥ 0 and k g (Σ) ≥ c > 0 ⇒ σ 1 ≥ c . Equality holds iff M ∼ = B 2 ( 1 c ). Escobar ’97: ( M n , g ) , n ≥ 3, Ric g ≥ 0 and all boundary principal curvatures κ (Σ) ≥ c > 0 ⇒ σ 1 > c 2 . Escobar’s Conjecture: ( M n , g ) , n ≥ 3, Ric g ≥ 0 and κ (Σ) ≥ c > 0 ⇒ σ 1 ≥ c . Equality holds iff M ∼ = B n ( 1 c ). (Compare to Lichernowicz-Obata’s theorem) Even unknown for Euclidean case M n ⊂ R n , n ≥ 3. 10 / 30

  12. Isoperimetric upper bound for Steklov Eigenvalue Two dimensions ( M 2 , g ) Weinstock ’54: simply connected, σ 1 L ≤ 2 π = ( σ 1 L )( B 2 ) ( L is boundary length). Equality holds iff ∃ a conformal diffeomorphism ϕ : M → B 2 such that ϕ | Σ is an isometry. Fraser-Schoen ’11: , σ 1 L ≤ 2( g + r ) π , genus g and boundary components r . Fraser-Schoen ’16: annulus type, σ 1 L ≤ ( σ 1 L )( M cc ), M cc is critical catenoid in B 3 . Fraser-Schoen ’16: If ( σ 1 L )( M , g 0 ) = max g ( σ 1 L )( M , g ) , then there exist independent eigenfunction u 1 , · · · , u n which give a conformal free boundary minimal immersion u i : ( M , g 0 ) → B n with u i | Σ is an isometry. Matthiesen-Petrides ’20 (arXiv): any topological type, existence of smooth maximal metric for σ 1 L . 11 / 30

  13. Isoperimetric upper bound for Steklov Eigenvalue Higher dimensions M n ⊂ R n , n ≥ 3 1 1 n ≤ ( σ 1 Vol n )( B n ), Equality holds iff Brock ’01: σ 1 Vol M n = B n ( r ). Bucur-Ferone-Nitsch-Trombetti ’17: convex, 1 1 n − 1 ≤ ( σ 1 Area n − 1 )( B n ), Equality holds iff σ 1 Area M n = B n ( r ). Fraser-Schoen ’17: ∃ smooth contractible domain 1 1 M n ⊂ R n , n ≥ 3 with ( σ 1 Area n − 1 )( M ) > ( σ 1 Area n − 1 )( B n ) 12 / 30

  14. Comparison of Steklov Eigenvalue with Boundary Eigenvalue Q.L.Wang-C.Y.Xia ’09: ( M n , g ) , n ≥ 3, Ric g ≥ 0 and κ (Σ) ≥ c > 0, then √ λ 1 √ √ λ 1 − ( n − 1) c 2 ) . σ 1 ≤ ( n − 1) c ( λ 1 + where λ 1 is first closed eigenvalue of (Σ , g Σ ). ( λ 1 ≥ ( n − 1) c 2 was proved by C.Y.Xia ’07.) 13 / 30

  15. Comparison of Steklov Eigenvalue with Boundary Eigenvalue Q.L.Wang-C.Y.Xia ’09: ( M n , g ) , n ≥ 3, Ric g ≥ 0 and κ (Σ) ≥ c > 0, then √ λ 1 √ √ λ 1 − ( n − 1) c 2 ) . σ 1 ≤ ( n − 1) c ( λ 1 + where λ 1 is first closed eigenvalue of (Σ , g Σ ). ( λ 1 ≥ ( n − 1) c 2 was proved by C.Y.Xia ’07.) ( M n , g ) , n ≥ 3, W [2] ≥ 0 and κ (Σ) ≥ c > 0, Karpukhin ’17: then λ k σ k ≤ ( n − 1) c , n ≥ 4 , σ k ≤ 2 λ k 3 c , n = 3 . (Based on Results on Steklov eigenvalue estimates for p -forms by Raulot-Savo ’12, Yang-Yu ’17) 13 / 30

  16. Our results Theorem (Xiong- X. ’19) Let ( M n , g ) , n ≥ 2 be a compact Riemannian n-manifold with boundary Σ . Assume Sect g ≥ 0 and κ (Σ) ≥ c > 0 . Then σ 1 ≥ c. Equality holds if and only if M ∼ = B n ( 1 c ) ⊂ R n . Escobar’s conjecture holds true for manifolds with Sect g ≥ 0. Especially, true for Euclidean domains. 14 / 30

  17. Our results Theorem (Xiong- X. ’19) Let ( M n , g ) , n ≥ 2 be a compact Riemannian n-manifold with boundary Σ . Assume Sect g ≥ 0 and κ (Σ) ≥ c > 0 . Then λ 1 σ 1 ≤ ( n − 1) c with equality holds if and only if M ∼ = B n ( 1 c ) ⊂ R n . Moreover, λ k σ k ≤ ( n − 1) c , ∀ k . Compare with Q.L.Wang-C.Y.Xia ’09, stronger assumption and stronger conclusion; Compare with Karpukhin ’17, different assumption and same conclusion in n ≥ 4 and better conclusion in n = 3. 15 / 30

  18. Review of Payne-Escobar’s method in n = 2. ∆ |∇ f | 2 ≥ 0, then ϕ = |∇ f | 2 attains its maximum at x 0 ∈ ∂ Ω. At x 0 ∈ ∂ Ω, consider Fermi coordinates of ∂ Ω, ∂ Ω is parametrized by arc-length γ ( s ). 0 = ∆ f | Σ = f νν + κ f ν + f ′′ = f νν + κσ 1 f + f ′′ . Then f νν = − κσ 1 f − f ′′ , and 0 ≤ ϕ ν ( s 0 ) = 2( − f ′′ − κσ 1 f ) σ 1 f + 2( σ 1 − κ ) f ′ 2 , ϕ ′ ( s 0 ) = 0 , ϕ ′′ ( s 0 ) ≤ 0 . All inequalities involves only f , f ′ , f ′′ . By simple calculation, one can show σ 1 ≥ κ ( s 0 ) ≥ c . This method fails to handle higher dimensions. 16 / 30

  19. Review of Escobar’s method in n ≥ 3. n ≥ 3, using Reilly’s formula ∫ (∆ f ) 2 − |∇ 2 f | 2 − Ric ( ∇ f , ∇ f ) [ ] M ∫ 2 f ν ∆ Σ f + Hf 2 [ ] = ν + h ( ∇ Σ f , ∇ Σ f ) Σ Using ∆ f = 0, f ν = σ 1 f , Ric ≥ 0, h ≥ cg Σ , one gets ∫ ( c − 2 σ 1 ) |∇ Σ f | 2 + H σ 2 1 f 2 . 0 ≥ Σ Thus σ 1 > c 2 . Σ |∇ Σ f | 2 and Σ f 2 . ∫ ∫ No information between 17 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend