qcd phase diagram for nonzero isospin asymmetry
play

QCD phase diagram for nonzero isospin-asymmetry SEWM, Barcelona, - PowerPoint PPT Presentation

QCD phase diagram for nonzero isospin-asymmetry SEWM, Barcelona, June 25 th 2018 Sebastian Schmalzbauer with Bastian Brandt & Gergely Endr odi Outline QCD with isospin-asymmetry introduction motivation forecast pion


  1. QCD phase diagram for nonzero isospin-asymmetry SEWM, Barcelona, June 25 th 2018 Sebastian Schmalzbauer with Bastian Brandt & Gergely Endr˝ odi

  2. Outline • QCD with isospin-asymmetry • introduction • motivation • forecast • pion condensation on the lattice • symmetry breaking • simulation details • extrapolating physical results • results for the isospin phase diagram • chiral crossover • pion condensation phase boundary • deconfinement transition • summary 1 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  3. QCD phase diagram (taken from NICA) 2 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  4. Motivation • two quark flavors u , d 3 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  5. Motivation • two quark flavors u , d • isospin density n I = n u − n d � = 0 : (taken from thescienceexplorer) • systems with charged pions • neutron stars ( udd ) stable 10 14 yr • heavy-ion collisions (N > Z) 160 10 12 yr 10 10 yr 140 10 8 yr 10 6 yr 120 10 4 yr 100 yr 100 1 yr 10 6 s Z = N 80 10 4 s 100 s 60 1 s 40 10 −2 s 10 −4 s 20 10 −6 s 10 −8 s N no data Z 20 40 60 80 100 (taken from wikipedia) 3 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  6. Motivation • two quark flavors u , d • isospin density n I = n u − n d � = 0 : (taken from thescienceexplorer) • systems with charged pions • neutron stars ( udd ) stable 10 14 yr • heavy-ion collisions (N > Z) 160 10 12 yr 10 10 yr 140 10 8 yr • no sign problem ⇒ lattice simulations 10 6 yr 120 10 4 yr 100 yr 100 1 yr 10 6 s Z = N 80 10 4 s 100 s 60 1 s 40 10 −2 s 10 −4 s 20 10 −6 s 10 −8 s N no data Z 20 40 60 80 100 (taken from wikipedia) 3 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  7. Motivation • two quark flavors u , d • isospin density n I = n u − n d � = 0 : (taken from thescienceexplorer) • systems with charged pions • neutron stars ( udd ) stable 10 14 yr • heavy-ion collisions (N > Z) 160 10 12 yr 10 10 yr 140 10 8 yr • no sign problem ⇒ lattice simulations 10 6 yr 120 10 4 yr • analogies to baryon density 100 yr 100 1 yr • Silver Blaze 10 6 s Z = N 80 10 4 s • color neutral compostite particles 100 s 60 • saturation 1 s 40 10 −2 s • technical similarities (small eigenvalues) 10 −4 s 20 10 −6 s 10 −8 s N no data Z 20 40 60 80 100 (taken from wikipedia) 3 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  8. Conjectured QCD isospin phase diagram • baryon chemical potential µ B = 0 • isospin chemical potential µ I = ( µ u − µ d ) / 2 • rich phase structure: • vacuum (white) • quark-gluon plasma • pion condensate • color superconductor 4 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  9. Setup

  10. Pion condensation: symmetry breaking • QCD with light quarks M = / D + m ud 1 • chiral symmetry breaking pattern SU (2) V 5 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  11. Pion condensation: symmetry breaking • QCD with light quarks M = / D + m ud 1 + µ I γ 0 τ 3 • chiral symmetry breaking pattern SU (2) V → U (1) τ 3 • problem: cannot directly observe the spontaneous symmetry breaking • pion condensate � ¯ ψγ 5 τ 1 , 2 ψ � = 0 (finite volume) • accumulation of zero eigenvalues (Goldstone mode) 5 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  12. Pion condensation: symmetry breaking • QCD with light quarks M = / D + m ud 1 + µ I γ 0 τ 3 + i λγ 5 τ 2 • chiral symmetry breaking pattern SU (2) V → U (1) τ 3 → ∅ • problem: cannot directly observe the spontaneous symmetry breaking • pion condensate � ¯ ψγ 5 τ 1 , 2 ψ � = 0 (finite volume) • accumulation of zero eigenvalues (Goldstone mode) • solution: add explicit unphysical breaking (pionic source) • can observe spontaneous symmetry breaking • no zero eigenvalues 5 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  13. Pion condensation: symmetry breaking • QCD with light quarks M = / D + m ud 1 + µ I γ 0 τ 3 + i λγ 5 τ 2 • chiral symmetry breaking pattern SU (2) V → U (1) τ 3 → ∅ • problem: cannot directly observe the spontaneous symmetry breaking • pion condensate � ¯ ψγ 5 τ 1 , 2 ψ � = 0 (finite volume) • accumulation of zero eigenvalues (Goldstone mode) • solution: add explicit unphysical breaking (pionic source) • can observe spontaneous symmetry breaking • no zero eigenvalues • need to extrapolate λ → 0 for physical results 5 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  14. ❘ Simulation Details • QCD partition function for N f = 2 + 1 rooted staggered quarks � D [ U ] (det M ud det M s ) 1 / 4 e − S G Z = 6 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  15. ❘ Simulation Details • QCD partition function for N f = 2 + 1 rooted staggered quarks � D [ U ] (det M ud det M s ) 1 / 4 e − S G Z = • quark matrices with η 5 = ( − 1) n t + n x + n y + n z � � / D µ I + m ud λη 5 M s = / M ud = , D 0 + m s / − λη 5 D − µ I + m ud 6 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  16. Simulation Details • QCD partition function for N f = 2 + 1 rooted staggered quarks � D [ U ] (det M ud det M s ) 1 / 4 e − S G Z = • quark matrices with η 5 = ( − 1) n t + n x + n y + n z � � / D µ I + m ud λη 5 M s = / M ud = , D 0 + m s / − λη 5 D − µ I + m ud • no sign problem due to η 5 τ 1 M τ 1 η 5 = M † : � M † M + λ 2 � M = / det M ud = det ∈ ❘ > 0 D µ I + m ud 6 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  17. Simulation Details • QCD partition function for N f = 2 + 1 rooted staggered quarks � D [ U ] (det M ud det M s ) 1 / 4 e − S G Z = • quark matrices with η 5 = ( − 1) n t + n x + n y + n z � � / D µ I + m ud λη 5 M s = / M ud = , D 0 + m s / − λη 5 D − µ I + m ud • no sign problem due to η 5 τ 1 M τ 1 η 5 = M † : � M † M + λ 2 � M = / det M ud = det ∈ ❘ > 0 D µ I + m ud • first studies [Kogut, Sinclair ’02] [de Forcrand, Stephanov, Wenger ’07] • in this work: stout-smeared quarks, physical pion masses, tree-level Symanzik improved gluons [Brandt, Endr˝ odi, Schmalzbauer ’18] 6 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  18. Observables • chiral and pion condensate � π ± � = T = T ∂ ln Z ∂ ln Z � ¯ � ψψ , V ∂ m ud V ∂λ • Polyakov loop N t − 1 � � 1 � � P = tr U t ( n ) V n x , n y , n z n t =0 • need to be renormalized Σ ¯ ψψ , Σ π , P r 7 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  19. λ -extrapolation: concepts • naive limit � D [ U ] e − S ( λ ) O ( λ ) � O � = lim λ → 0 8 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  20. λ -extrapolation: concepts • naive limit � D [ U ] e − S ( λ ) O ( λ ) � O � = lim λ → 0 • operator improvement � D [ U ] e − S ( λ ) O (0) � O � = lim λ → 0 8 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  21. λ -extrapolation: concepts • naive limit � D [ U ] e − S ( λ ) O ( λ ) � O � = lim λ → 0 • operator improvement � D [ U ] e − S ( λ ) O (0) � O � = lim λ → 0 • reweighting of configurations � O � = � OW λ � λ � W λ � λ with full (expensive) or leading order (cheap) reweighting factor ln W LO = − λ V ln W λ = S ( λ ) − S (0) = ln W LO + O ( λ 4 ) , 2 T π ± 8 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  22. Operator improvement: pion condensate • cannot measure pion condensation without pionic source π ± = T λ M † M + λ 2 � − 1 � 2 V tr 9 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

  23. Operator improvement: pion condensate • cannot measure pion condensation without pionic source π ± = T λ M † M + λ 2 � − 1 � 2 V tr • Banks-Casher type relation [Kanazawa, Wettig, Yamamoto ’11] → λ → π �� � d ξ ρ ( ξ )( ξ 2 + λ 2 ) − 1 V →∞ λ → 0 � π ± � − − − − − − − 4 � ρ (0) � 2 with density of singular values ρ ( ξ ) 9 / 16 S. Schmalzbauer (Goethe Universit¨ at Frankfurt) - QCD phase diagram for nonzero isospin-asymmetry

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend