observables and anomalies in b k decays
play

Observables and anomalies in B K ( ) + decays Sam Cunliffe on - PowerPoint PPT Presentation

Observables and anomalies in B K ( ) + decays Sam Cunliffe on behalf of the LHCb collaboration. [stc09@ic.ac.uk] Frontiers in Fundamental Physics, Aix Marseille Universit e 18th July 2014 Why study rare decays? The LHCb


  1. Observables and anomalies in B → K ( ∗ ) ℓ + ℓ − decays Sam Cunliffe on behalf of the LHCb collaboration. [stc09@ic.ac.uk] Frontiers in Fundamental Physics, Aix Marseille Universit ´ e 18th July 2014

  2. Why study rare decays? The LHCb detector b → sℓℓ Theory The operator-product expansion Observables, observables, observables Isospin asymmetry of B → K ( ∗ ) µ + µ − Angular analysis of B 0 → K ∗ 0 µ + µ − Observables from the angular distribution LHCb measurement Interpretations Global fits Form factor uncertainties Lepton universality in B ± → K ± ℓ + ℓ − Something strange from charm Conclusions S.Cunliffe (Imperial) FFP14 2/21

  3. Why study rare decays? ◮ ‘Rare’ F lavour- C hanging N eutral C urrent processes ◮ Forbidden at tree level = ⇒ proceed via loops (in SM) µ + Z 0 , γ µ − b s W − ◮ Searching for new particles via their indirect influence on rare processes ◮ Access to much higher mass scales (particles are virtual) ◮ Able to be model independent ◮ Search for broad classes of new particles at once ◮ For other flavour observables (and another perspective on b → sℓℓ ), see talk by F. Mescia , yesterday S.Cunliffe (Imperial) FFP14 Why study rare decays? 3/21

  4. Why study rare decays? ◮ If you want to learn about space... ◮ If you want to find new particles... Very Large Array - Image courtesy of NRAO/AUI [Source] STS-I Launch - NASA/CC [Source] S.Cunliffe (Imperial) FFP14 Why study rare decays? 4/21

  5. Why study rare decays? ◮ If you want to learn about space... ◮ If you want to find new particles... CMS Monojet candidate - [Source] S.Cunliffe (Imperial) FFP14 Why study rare decays? 4/21

  6. Why study rare decays? ◮ If you want to learn about space... ◮ If you want to find new particles... ¯ ¯ ¯ q d d W − b s χ µ + Z 0 , γ µ − ¯ q χ S.Cunliffe (Imperial) FFP14 Why study rare decays? 4/21

  7. Why study rare decays? ◮ If you want to learn about space... ◮ If you want to find new particles... ¯ ¯ ¯ q d d g ˜ b s χ µ + ˜ d H 0 ˜ µ − ¯ q χ S.Cunliffe (Imperial) FFP14 Why study rare decays? 4/21

  8. Why study rare decays? ◮ If you want to learn about space... ◮ If you want to find new particles... ¯ ¯ q ¯ d d W − b s χ µ + Z ′ µ − ¯ q χ S.Cunliffe (Imperial) FFP14 Why study rare decays? 4/21

  9. Why study rare decays? ◮ If you want to learn about space... ◮ If you want to find new particles... ¯ ¯ q ¯ d d b s χ µ + Z ′ µ − ¯ q χ S.Cunliffe (Imperial) FFP14 Why study rare decays? 4/21

  10. Why study rare decays? The LHCb detector b → sℓℓ Theory The operator-product expansion Observables, observables, observables Isospin asymmetry of B → K ( ∗ ) µ + µ − Angular analysis of B 0 → K ∗ 0 µ + µ − Observables from the angular distribution LHCb measurement Interpretations Global fits Form factor uncertainties Lepton universality in B ± → K ± ℓ + ℓ − Something strange from charm Conclusions

  11. The LHCb detector Beauty Experiment at Small Theta ◮ 2 < η < 5 ◮ Tracking: 0 . 4 < δp/p < 0 . 6% ◮ Vertexing: σ IP = 20 µ m ◮ Kaon ID = 95% (5% mis-ID) ◮ Muon ID = 98% (1% mis-ID) b θ 1 θ z 2 b ◮ Physics reach in other areas than rare b → sℓℓ LHCb MC s = 8 TeV observables... ◮ e.g. talks by J. Dalseno on CPV in multibody B 0 π /4 decays π θ /2 0 [rad] π 2 /4 π π 3 /4 /2 and B. Couturier on LHCb outreach/education π 3 /4 π θ [rad] π 1 S.Cunliffe (Imperial) FFP14 The LHCb detector 5/21

  12. Why study rare decays? The LHCb detector b → sℓℓ Theory The operator-product expansion Observables, observables, observables Isospin asymmetry of B → K ( ∗ ) µ + µ − Angular analysis of B 0 → K ∗ 0 µ + µ − Observables from the angular distribution LHCb measurement Interpretations Global fits Form factor uncertainties Lepton universality in B ± → K ± ℓ + ℓ − Something strange from charm Conclusions

  13. The operator-product expansion Or: how to be model independent ¯ ¯ ¯ ¯ d d d d W − b s b s W + µ + µ + W − Z 0 , γ ν µ µ − µ − b → sℓℓ Theory S.Cunliffe (Imperial) FFP14 6/21

  14. The operator-product expansion Or: how to be model independent b s s b ℓ + γ ℓ − “ O 7 ” “ O 9 ”, “ O 10 ” “ C 7 ” “ C 9 ”, “ C 10 ” ◮ “Effective operators” O i ◮ “Wilson Coefficients” C i ◮ c.f. G F from 4 point β decay model ◮ Can predict C i ’s for SM and NP scenarios ◮ Have an effective Hamiltonian = ⇒ can calculate things e 2 H eff = − 4 G F 16 π 2 V tb V ∗ � C i O i + C ′ i O ′ � � √ + h . c . ts i 2 i =7 , 9 , 10 b → sℓℓ Theory S.Cunliffe (Imperial) FFP14 7/21

  15. The operator-product expansion Or: how to be model independent b s s b ℓ + γ ℓ − “ O 7 ” “ O 9 ”, “ O 10 ” “ C 7 ” “ C 9 ”, “ C 10 ” ◮ “Effective operators” O i ◮ “Wilson Coefficients” C i ◮ c.f. G F from 4 point β decay model ◮ Can predict C i ’s for SM and NP scenarios ◮ Have an effective Hamiltonian = ⇒ can calculate things e 2 H eff = − 4 G F 16 π 2 V tb V ∗ � C i O i + C ′ i O ′ � � √ + h . c . ts i 2 i =7 , 9 , 10 b → sℓℓ Theory S.Cunliffe (Imperial) FFP14 7/21

  16. The operator-product expansion Or: how to be model independent b s s b ℓ + γ ℓ − “ O 7 ” “ O 9 ”, “ O 10 ” “ C 7 ” “ C 9 ”, “ C 10 ” ◮ “Effective operators” O i ◮ “Wilson Coefficients” C i ◮ c.f. G F from 4 point β decay model ◮ Can predict C i ’s for SM and NP scenarios ◮ Have an effective Hamiltonian = ⇒ can calculate things e 2 H eff = − 4 G F 16 π 2 V tb V ∗ � C i O i + C ′ i O ′ � � √ + h . c . ts i 2 i =7 , 9 , 10 b → sℓℓ Theory S.Cunliffe (Imperial) FFP14 7/21

  17. The operator-product expansion Or: how to be model independent b s s b ℓ + γ ℓ − “ O 7 ” “ O 9 ”, “ O 10 ” “ C 7 ” “ C 9 ”, “ C 10 ” ◮ “Effective operators” O i ◮ “Wilson Coefficients” C i ◮ c.f. G F from 4 point β decay model ◮ Can predict C i ’s for SM and NP scenarios ◮ Have an effective Hamiltonian = ⇒ can calculate things e 2 H eff = − 4 G F 16 π 2 V tb V ∗ � C i O i + C ′ i O ′ � � √ + h . c . ts i 2 i =7 , 9 , 10 b → sℓℓ Theory S.Cunliffe (Imperial) FFP14 7/21

  18. A word on QCD Enter form factor uncertainty ◮ Observables also contain contributions Hadronic Form Factors. ◮ Different theorists use different versions/approximations. ˆ O = f ( C i , { form factors } ) ¯ ¯ d d W − b s µ + Z 0 , γ µ − b → sℓℓ Theory S.Cunliffe (Imperial) FFP14 8/21

  19. A word on QCD Enter form factor uncertainty ◮ Observables also contain contributions Hadronic Form Factors. ◮ Different theorists use different versions/approximations. ˆ O = f ( C i , { form factors } ) ¯ ¯ ¯ ¯ d d d d W − b s b s µ + µ + Z 0 , γ µ − µ − b → sℓℓ Theory S.Cunliffe (Imperial) FFP14 8/21

  20. O 7 J c b → sγ 1 P ′ C 7 | A R � | 2 V ( q 2 ) 5 C 9 b → sℓℓ ξ ⊥ A 2 ( q 2 ) cos θ K T 3 ( q 2 ) J s ¯ 2 A FB ξ � S 6 P ′ A L 4 ⊥ q 2 C NP 9 Nomenclature

  21. O 7 J c b → sγ 1 P ′ C 7 | A R � | 2 V ( q 2 ) 5 q 2 = m 2 C 9 ℓℓ b → sℓℓ ξ ⊥ A 2 ( q 2 ) cos θ K Squared dilepton T 3 ( q 2 ) J s ¯ 2 A FB ξ � S 6 invariant mass P ′ A L 4 ⊥ q 2 C NP 9 Nomenclature

  22. Observables, observables, observables ◮ Need to find measurable quantities that... ◮ ...are sensitive to the Wilson Coefficients ◮ ...cancel the QCD uncertainty (hadronic form factors) wherever possible Lepton-universality � B ± → K ± µ + µ − � B R K = � � B ± → K ± e + e − B Isospin asymmetry (spectator-model-asymmetry) � B 0 → K ( ∗ )0 µ + µ − � τ B 0 � B ± → K ( ∗ ) ± µ + µ − � B − τ B + B A I = � � τ B 0 � � B 0 → K ( ∗ )0 µ + µ − B ± → K ( ∗ ) ± µ + µ − B + τ B + B b → sℓℓ Theory S.Cunliffe (Imperial) FFP14 10/21

  23. Why study rare decays? The LHCb detector b → sℓℓ Theory The operator-product expansion Observables, observables, observables Isospin asymmetry of B → K ( ∗ ) µ + µ − Angular analysis of B 0 → K ∗ 0 µ + µ − Observables from the angular distribution LHCb measurement Interpretations Global fits Form factor uncertainties Lepton universality in B ± → K ± ℓ + ℓ − Something strange from charm Conclusions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend