observability controllability
play

Observability & Controllability B. Wayne Bequette State Space - PowerPoint PPT Presentation

Observability & Controllability B. Wayne Bequette State Space Model Infer State i.c. from Output Measurements Important for State Estimation Controllability Chemical and Biological Engineering Observability x x u = +


  1. Observability & Controllability B. Wayne Bequette • State Space Model • Infer State i.c. from Output Measurements • Important for State Estimation • Controllability Chemical and Biological Engineering

  2. Observability x x u = Φ + Γ k + 1 k k Discrete, state space model y Cx = k k Step from initial condition to n-1 for n output measurements y 0 = Cx 0 [ ] = C Φ x 0 + C Γ u 0 y 1 = Cx 1 = C Φ x 0 + Γ u 0 # % [ ] = C Φ Φ x 0 + Γ u 0 y 2 = Cx 2 = C Φ x 1 + Γ u 1 { } + Γ u 1 $ & = C Φ 2 x 0 + C ΦΓ u 0 + C Γ u 1 n 1 n 2 y C x C u  C u − − = Φ + Φ Γ + + Γ n 1 0 0 n 1 − − Can rearrange to solve for the initial condition B. Wayne Bequette

  3. Observability y C ⎡ ⎤ ⎡ ⎤ 0 ⎢ ⎥ ⎢ ⎥ y C u C − Γ Φ 1 0 ⎢ ⎥ ⎢ ⎥ 2 y C u C u x C ⎢ ⎥ ⎢ ⎥ − ΦΓ − Γ = Φ  2 0 1 0 ⎢ ⎥ ⎢ ⎥   ( n 1 ) × ⎢ ⎥ ⎢ ⎥ n 2 n 1 ⎢ y C u  C u ⎥ ⎢ C ⎥ − − − Φ Γ − − Γ Φ ⎣ ⎦ ⎣ ⎦   n 1       0      n   2      − − ( ) ( n 1 ) n n Ο × × Y = O x 0 Solve for the initial condition x 0 = O -1 Y Solution exists if O is nonsingular (full rank) B. Wayne Bequette

  4. Observability, Continuous-time  x Ax Bu = + y Cx = C ⎡ ⎤ ⎢ ⎥ CA ⎢ ⎥ 2 O CA observabil ity matrix ⎢ ⎥ = = ⎢ ⎥  ⎢ ⎥ n 1 CA ⎢ − ⎥ ⎣ ⎦      ( n n ) Ο × B. Wayne Bequette

  5. Example 3-tank problem B. Wayne Bequette

  6. Example ! $ dh 1 # & dt ! $ # & " % ! $ h − 1 0 0 1 1 # & # & $ ' # & dh 2 1 − 1 0 h 2 0 F = # & +  # & $ ' # & dt # & # & u $ ' # & 0 1 − 1 0 h 3 # & " % # & " %  dh 3      # &    # & B A dt x " %      x ! # ! # ! # h h h 1 1 % & % & 1 % & ! # ! # ! # y = 1 0 0 h 2 y = 0 1 0 h 2 % & % & y = 0 0 1 h 2 % & " $ " $ " $               % & % &        % & h 3 h 3 h 3 % & % & C C " $ " $ % & C " $          x x x State 1 measured State 2 measured State 3 measured B. Wayne Bequette

  7. Example, continued " % − 1 0 0 $ ' A = 1 − 1 0 $ ' $ 0 1 − 1 ' # & [ ] [ ] [ ] C 0 1 0 C 0 0 1 C 1 0 0 = = = State 1 measured State 2 measured State 3 measured ! $ ! $ ! $ ! $ C 1 0 0 0 1 0 0 0 1 # & # & # & # & CA − 1 0 0 1 − 1 0 0 1 − 1 = = = # & # & # & # & # & # 1 0 0 & # − 2 1 0 & # 1 − 2 1 & CA 2 " % " % " % " %      ( ) Ο 3 × 3 Rank = 1 Rank = 2 Rank = 3 If state 3 (height of 3 rd tank) is measured, states 1 and 2 are observable B. Wayne Bequette

  8. Does this make sense? If h 1 is measured, can you detect perturbations in h 2 and/or h 3 ? B. Wayne Bequette

  9. Example, Discrete-Time " % 0.6065 0 0 $ ' 0.3033 0.6065 0 Φ = $ ' $ 0.0758 0.3033 0.6065 ' # & [ ] [ ] [ ] C 0 1 0 C 0 0 1 C 1 0 0 = = = State 1 measured State 2 measured State 3 measured " % " % " % " % C 1 0 0 0 1 0 0 0 1 $ ' $ ' $ ' $ ' C Φ 0.6065 0 0 0.3033 0.6065 0 0.0758 0.3033 0.6065 = = = $ ' $ ' $ ' $ ' $ C Φ 2 ' $ 0.3679 0 0 ' $ 0.3679 0.3679 0 ' $ 0.1839 0.3679 0.3679 ' # & # & # & # &      ( ) Ο 3 × 3 Rank = 1 Rank = 2 Rank = 3 If state 3 (height of 3 rd tank) is measured, states 1 and 2 are observable B. Wayne Bequette

  10. Numerical Example l Some perturbation in states initially, with no input changes. The following output measurements are available Ø y0 = 0 (t=0 min), y1 = 0.3791 (t=0.5 min), y2 = 0.5518 (t=1.0 min) B. Wayne Bequette

  11. The observability matrix " % " % C 0 0 1 $ ' $ ' C Φ 0.0758 0.3033 0.6065 = $ ' $ ' $ C Φ 2 ' $ 0.1839 0.3679 0.3679 ' # & # &      ( ) Ο 3 × 3 Solve for the initial condition x 0 = O -1 Y To find ! $ 1 # & x 0 = 1 # & # & 0 " % B. Wayne Bequette

  12. Which is consistent with the simulation B. Wayne Bequette

  13. Controllability x x u = Φ + Γ k + 1 k k Discrete, state space model y Cx = k k For an n-state system with known initial condition, find the sequence of n manipulated input moves to reach a desired x n x 0 [ ] x 1 = Φ x 0 + Γ u 0 # % [ ] = Φ Φ x 0 + Γ u 0 x 2 = Φ x 1 + Γ u 1 { } + Γ u 1 $ & x 2 = Φ 2 x 0 + ΦΓ u 0 + Γ u 1 etc . Exercise: Solve for the manipulated inputs u 0 à à u n-1 to achieve x n Use the 3-tank example, then generalize B. Wayne Bequette

  14. Controllability Solution x 1 = Φ x 0 + Γ u 0 [ ] + Γ u 1 x 2 = Φ x 1 + Γ u 1 = Φ Φ x 0 + Γ u 0 x 2 = Φ 2 x 0 + ΦΓ u 0 + Γ u 1 x 3 = Φ 3 x 0 + Φ 2 Γ u 0 + ΦΓ u 1 + Γ u 2 # % u 0 ' ( # % x 3 = Φ 3 x 0 + Φ 2 Γ ΦΓ Γ u 1 ' ( $ & ' ( u 2 ' ( $ & B. Wayne Bequette

  15. $ & u 0 ( ) $ & x 3 −Φ 3 x 0 = Φ 2 Γ ΦΓ Γ u 1 ( ) % ' ( ) u 2 ( ) % ' ! $ u 0 # & − 1 x 3 −Φ 3 x 0 ! $ ! $ = Φ 2 Γ ΦΓ Γ u 1 # & " % " % # & u 2 # & " % Must be invertible (non-singular) B. Wayne Bequette

  16. In General $ & u 0 ( ) $ & x n −Φ n x 0 = Φ n Γ ... ΦΓ Γ u n − 2 ( ) % ' ( ) u n − 1 ( ) % ' " % u 0 $ ' − 1 x n −Φ n x 0 = Φ n Γ ... ΦΓ Γ " % " % u n − 2 $ ' # & # & $ ' u n − 1 $ ' # & Must be invertible (non-singular) B. Wayne Bequette

  17. Three Tank Example x 0 = [1;1;1] x 3 = [0;0;0] B. Wayne Bequette

  18. % use the three tank example % first, continuous state space model a = [-1 0 0;1 -1 0;0 1 -1] b = [1;0;0] c = [0 0 1] d = 0 % lintank = ss(a,b,c,d) % defines continuous state space model % -------------------------------------------------------------------- % % discrete time model delt = 0.5; % sample time of 0.5 minutes tankssz = c2d(lintank,delt,'zoh') % create discrete state space model from continuous % % extract the matrix information % [phi,gamma,cmat,dmat] = ssdata(tankssz) % cmat will equal c % % CONTmat = [phi*phi*gamma phi*gamma gamma] % rank(CONTmat) B. Wayne Bequette

  19. x0 = 1;1;1] ; xdis(:,1) = x0; x3 = [0;0;0] u = inv(CONTmat)*(x3 - (phi^3)*x0) time = [0 0.5 1 1.5]; tplot = []; yplot = []; xplot = []; % for k = 1:3; [tdummy,xdummy] = ode45('linodepar',[time(k) time(k+1)],xdis(:,k),[],a,b,u(k)); ndum = length(tdummy); xdis(:,k+1) = xdummy(ndum,:); % plant state tplot = [tplot;tdummy]; xplot = [xplot;xdummy]; end % u(k+1) = u(k) B. Wayne Bequette

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend