uncertain z w outline well posedness and topological
play

uncertain z + w Outline Well-posedness and topological - PowerPoint PPT Presentation

Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation Dimitri PEAUCELLE & Didier HENRION & Denis ARZELIER all with LAAS-CNRS - Toulouse, FRANCE also with Czech Technical


  1. Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation Dimitri PEAUCELLE & Didier HENRION ‡ & Denis ARZELIER all with LAAS-CNRS - Toulouse, FRANCE ‡ also with Czech Technical University in Prague

  2. Problem statement Well-posedness of interconnected system + A , E possibly non square z w ∇ ∈ ∇ ∇ uncertain z + w Outline ① Well-posedness and topological separation ② Robust stability of descriptor systems ③ Main result ④ Some results for robust analysis ⑤ Numerical example 1 GT MOSAR 9-10 juin 2005

  3. Topological separation General framework w G (z, w)=0 w Well-Posedness: z w Bounded ( ¯ w, ¯ z ) ⇒ unique bounded ( w, z ) F (w, z)=0 z z ∃ θ topological separator: F (¯ z ) = { ( w, z ) : F ¯ z ( w, z ) = 0 } ⊂ { ( w, z ) : θ ( w, z ) > − φ 1 ( || ¯ z || ) } G I ( ¯ w ) = { ( w, z ) : G ¯ w ( z, w ) = 0 } ⊂ { ( w, z ) : θ ( w, z ) ≤ φ 2 ( || ¯ w || ) } Related results : ➞ Stability ( θ Lyapunov certificate), Passivity ( θ storage function), IQC ... ➞ Robust analysis of Linear uncertain systems (Iwasaki) 2 GT MOSAR 9-10 juin 2005

  4. Well-posedness in the considered case + Well-posedness: z w Null ( E − A∇ ) is empty ∀∇ ∈ ∇ ∇ z + w ✪ Includes classical µ theory framework: I − A∇ non-singular for all (structured) norm-bounded ∇ ✪ Results of the paper extend to block diagonal uncertainties: ∇ = diag ( δ R 1 I r 1 , . . . , δ R N R I r N R , δ C 1 I c 1 , . . . , δ C N C I c N C , ∆ C 1 , . . . , ∆ C N f ) 3 GT MOSAR 9-10 juin 2005

  5. Well-posedness and descriptor systems ⇔ Es − A full rank for all s ∈ C + Stability of E ˙ x = Ax   w = ∇ z  for all ∇ = s − 1 I n ∈ C + ⇔ W.P . of Ez = Aw   + x x + 4 GT MOSAR 9-10 juin 2005

  6. Well-posedness and pole location Let a region defined as a half plane or a disk 2 s ∗ + d 3 ss ∗ ≤ 0 } D = { s ∈ C : d 1 + d 2 s + d ∗ D -Stability of E ˙ x = Ax ⇔ Es − A full rank for all s ∈ D   w = ∇ z  ⇔ W.P for all ∇ = ∇ ∇ . of  Ez = Aw  ∇ = { s − 1 I n : d 1 s − 1 s −∗ + d 2 s −∗ + d ∗ 2 s − 1 + d 3 ≥ 0 } . where ∇ 5 GT MOSAR 9-10 juin 2005

  7. Well-posedness and polynomial descriptor systems Stability of A d x ( d ) + A d − 1 x ( d − 1) + · · · + A 1 ˙ x + A 0 x = 0   w = ∇ z  for all ∇ = s − 1 I d n ∈ C + ⇔ W.P . of E z = A w       · · · · · · A d O O A d − 1 A 1 A 0         − I O O I O O         where E = A = − . .     ... ... . .     . .         O O − I O I O 6 GT MOSAR 9-10 juin 2005

  8. Robust stability of descriptor systems Robust stability ∀ ∆ ∈ ∆ ∆ of E (∆) ˙ x = A (∆) x with E (∆) = E A + ( B ∆ − E B )( E D − D ∆) − 1 E C A (∆) = A + ( B ∆ − E B )( E D − D ∆) − 1 C    s − 1 ∈ C +  s − 1 I n  w = ∇ z O    ⇔ W.P for all ∇ = : . of   E z = A w O ∆ ∆ ∈ ∆ ∆       E A E B  A B     where E = A =   E C E D C D 7 GT MOSAR 9-10 juin 2005

  9. Main result: Quadratic separation   w = ∇ z  for all ∇ = ∇ ∇ W.P . of  E z = A w     � � I    E ◦∗ ∇ ∗    ≤ O , ∀∇ ∈ ∇ ∇ Θ I      ∇E ◦ ⇔ ∃ Θ :   � � ⊥∗ � � ⊥    EE ◦ EE ◦ > O .  Θ −A −A  where the columns of E ◦ form an orthogonal basis of E ∗ � � ⊥ � � EE ◦ EE ◦ −A −A and the columns of span the null-space of . 8 GT MOSAR 9-10 juin 2005

  10. Application to descriptor systems   w = ∇ z  for all ∇ = s − 1 I n ∈ C + . Stability of E ˙ x = Ax ⇔ W.P . of Ez = Aw   Choice of separator: Θ � �� �     − E ◦∗ P � � O I  = − 2 Re ( s − 1 ) E ◦∗ PE ◦ E ◦∗ s −∗     I    E ◦ s − 1 − PE ◦ O E ◦∗ PE ◦ > O   LMI result ❶ : E ◦∗ P � � ⊥∗ O � � ⊥ EE ◦   EE ◦ < O − A − A   PE ◦ O E ∗ X ∗ = XE ≥ O , A ∗ X ∗ + XA < O Equivalent to ❷ : 9 GT MOSAR 9-10 juin 2005

  11. Example of descriptor system      1  1    ˙ x =    x Scalar ’switch’ system: 0 α ● x ( t ) = 0 the system is stable If α � = 0 � � ⊥ ❶ EE ◦ = [ ] → LMI p > 0 − A � � ❷ X = → LMI x 1 ≥ 0 , 2 x 1 + 2 x 2 α < 0 x 1 x 2 ● ˙ If α = 0 x = x the system is unstable    1 � � ⊥ ❶ =   → LMI p > 0 , 2 p < 0 EE ◦ − A  1 � � ❷ X = → LMI x 1 ≥ 0 , 2 x 1 < 0 x 1 x 2 10 GT MOSAR 9-10 juin 2005

  12. Application to uncertain descriptor systems : | δ | ≤ ¯ Robust Stability of E (∆) ˙ x = A (∆) x , ∆ = δ I δ    s − 1 ∈ C +  s − 1 I n  w = ∇ z O    ⇔ for all ∇ = : W.P . of .  | δ | ≤ ¯ E z = A w  O δ I m δ  Choice of separator:   E ◦∗ 2 Θ 1 E ◦ −E ◦∗ E ◦∗ 1 P 2 Θ 2   2  s − 1 E ◦   : ∇E ◦ =   1 Θ =   − P E ◦ O O    1   ∆ E ◦   2 Θ 2 ∗ E ◦ O Θ 3 2  E ◦∗ 1 P E ◦ E ◦∗ 2 Θ 3 E ◦  1 ≥ O , 2 ≥ O       δ Θ 2 ∗ + ¯ 2 ( Θ 1 + ¯ δ Θ 2 + ¯ E ◦∗ δ 2 Θ 3 ) E ◦ 2 ≤ O constrained by the LMIs     δ Θ 2 ∗ + ¯ 2 ( Θ 1 − ¯ δ Θ 2 − ¯  δ 2 Θ 3 ) E ◦ E ◦∗  2 ≤ O  11 GT MOSAR 9-10 juin 2005

  13. Reducing conservatism ◆ Original system            s − 1 I n  ˙  E A E B x  A B  x O      =      , ∇ =      E C E D z ∆ C D w ∆ O δ I m ❖ Augmented system     O I O O I O O O         ¨ ˙ x x     O E A E B O O A B O                 ˙ x x                 = O E C E D O O C D O                 z ∆ w ∆         E A O O E B A O O B             ˙ ˙ z ∆ w ∆     E C O O E D C O O D    s − 1 I 2 n O   , ∇ =  O δ I 2 m 12 GT MOSAR 9-10 juin 2005

  14. Reducing conservatism ◆ Quadratic separation on Original system ➞ Lyapunov stability with V ( η, ∆) = η ∗ Pη ❖ Quadratic separation on Augmented system ➞ Lyapunov stability with V ( η, ∆) = η ∗ P (∆) η where in the case E = I (not descriptor)     ∗  A (∆)  A (∆)     P (∆) = P   I I 13 GT MOSAR 9-10 juin 2005

  15. Robust stability analysis example     − 16 0 0 8 0 0 0 0 3 0 0 0         − 8 − 16 0 0 0 0 4 8 0 9 2 0             − 19 − 17 0 0 10 9 0 0 0 0 0 0         E = , A =        − 20  10 0 0 0 0 0 0 0 1 4 0             − 10 0 3 0 0 0 5 0 1 0 2 0         − 6 − 6 3 1 0 0 3 0 3 0 7 0 ◆ Quadratic separation on Original system ➞ LMIs feasible up to ¯ δ = 0 . 22 - infeasible for ¯ δ = 0 . 23 ❖ Quadratic separation on Augmented system ➞ LMIs feasible up to ¯ δ = 0 . 45 - infeasible for ¯ δ = 0 . 46 14 GT MOSAR 9-10 juin 2005

  16. Conclusions ➞ Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation is valuable for extensions of known results to de- scriptor systems. ➞ Applying existing methods to artificially augmented systems gives new less conservative results (more about this in Seville) 15 GT MOSAR 9-10 juin 2005

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend