draft
play

Draft EE 8235: Lecture 16 1 Lecture 16: Controllability and - PowerPoint PPT Presentation

Draft EE 8235: Lecture 16 1 Lecture 16: Controllability and observability Controllability Ability to steer state Observability Ability to estimate state Topics: Connections and differences with finite-dimensional case


  1. Draft EE 8235: Lecture 16 1 Lecture 16: Controllability and observability • Controllability ⋆ Ability to steer state • Observability ⋆ Ability to estimate state • Topics: ⋆ Connections and differences with finite-dimensional case ⋆ Exact vs. approximate controllability/observability ⋆ Conditions for controllability/observability ⋆ Gramians ⋆ Operator Lyapunov equations

  2. Draft EE 8235: Lecture 16 2 An example • Diffusion equation on L 2 [ − 1 , 1] with point actuation and sensing ψ t ( x, t ) = ψ xx ( x, t ) + b ( x ) u ( t ) � 1 φ ( t ) = c ( x ) ψ ( x, t ) d x − 1 ψ ( x, 0) = ψ 0 ( x ) ψ ( ± 1 , t ) = 0 Control and sensing points x c and x s 1 b ( x ) = 2 ǫ 1 [ x c − ǫ, x c + ǫ ] ( x ) 1 c ( x ) = 2 δ 1 [ x s − δ, x s + δ ] ( x ) � 1 , x ∈ [ a, b ] 1 [ a, b ] ( x ) = 0 , otherwise

  3. Draft EE 8235: Lecture 16 3 Controllability operator and Gramian ψ t ( t ) = A ψ ( t ) + B u ( t ) A : H ⊃ D ( A ) − → H B : U − → H • Controllability operator R t : L 2 ([0 , t ]; U ) − → H � t ψ ( t ) = [ R t u ] ( t ) = T ( t − τ ) B u ( τ ) d τ 0 ⋆ Adjoint � � ( τ ) = B † T † ( t − τ ) , τ ∈ [0 , t ] R † t ψ • Controllability Gramian � t T ( τ ) B B † T † ( τ ) d τ P t = R t R † t = 0

  4. Draft EE 8235: Lecture 16 4 Exact vs. approximate controllability • Exact controllability on [0 , t ] range ( R t ) = H ⋆ rarely satisfied by infinite-dimensional systems ⋆ never satisfied for systems with finite-dimensional U • Approximate controllability on [0 , t ] range ( R t ) = H ⋆ reasonable notion of controllability for infinite-dimensional systems ⋆ easily checkable conditions for Riesz-spectral systems approximate controllability on [0 , t ] � P t > 0 ⇔ {� ψ, P t ψ � > 0 , for all 0 � = ψ ∈ H } or � � � B † T † ( τ ) ψ = 0 on [0 , t ] ⇒ ψ = 0 � R † ⇔ = 0 null t

  5. Draft EE 8235: Lecture 16 5 Observability operator and Gramian ψ t ( t ) = A ψ ( t ) φ ( t ) = C ψ ( t ) A : H ⊃ D ( A ) − → H C : H − → Y • Observability operator O t : H − → L 2 ([0 , t ]; Y ) φ ( t ) = [ O t ψ (0) ] ( t ) = C T ( t ) ψ (0) ⋆ Adjoint � t � � T † ( τ ) C † φ ( τ ) d τ O † ( t ) = t φ 0 • Observability Gramian � t T † ( τ ) C † C T ( τ ) d τ V t = O † t O t = 0

  6. Draft EE 8235: Lecture 16 6 Exact vs. approximate observability • Exact observability on [0 , t ] ⋆ O t one-to-one and O − 1 bounded on the range of O t t • Approximate observability on [0 , t ] ⋆ null ( O t ) = 0 • ( A , · , C ) approximately obsv on [0 , t ] ⇔ ( A † , C † , · ) approximately ctrb on [0 , t ] approximate observability on [0 , t ] � V t > 0 ⇔ {� ψ, V t ψ � > 0 , for all 0 � = ψ ∈ H } or null ( O t ) = 0 ⇔ {C T ( τ ) ψ = 0 on [0 , t ] ⇒ ψ = 0 }

  7. Draft EE 8235: Lecture 16 7 Infinite horizon Gramians • Exponentially stable C 0 -semigroup T ( t ) �T ( t ) � ≤ M e − αt ∃ M, α > 0 ⇒ • Extended (i.e., infinite horizon) Gramians � ∞ T ( τ ) B B † T † ( τ ) d τ R ∞ R † P = = ∞ 0 � ∞ T † ( τ ) C † C T ( τ ) d τ O † V = ∞ O ∞ = 0 • Approximate controllability � � R † P > 0 ⇔ = 0 null ∞ • Approximate observability V > 0 ⇔ null ( O ∞ ) = 0

  8. Draft EE 8235: Lecture 16 8 Lyapunov equations Controllability Gramian P – unique self-adjoint solution to: � � � � � � � A † � A † ψ 1 , P ψ 2 P ψ 1 , A † ψ 2 B † ψ 1 , B † ψ 2 + = − for ψ 1 , ψ 2 ∈ D � � A † � � A † � ⊂ D ( A ) and A P ψ + P A † ψ = − B B † ψ P D for ψ ∈ D Observability Gramian V – unique self-adjoint solution to: �A ψ 1 , V ψ 2 � + �V ψ 1 , A ψ 2 � = − �C ψ 1 , C ψ 2 � for ψ 1 , ψ 2 ∈ D ( A ) � � A † � and A † V ψ + V A ψ = − C † C ψ V D ( A ) ⊂ D for ψ ∈ D ( A )

  9. Draft EE 8235: Lecture 16 9 Controllability of Riesz-spectral systems m � ψ t ( x, t ) = [ A ψ ( · , t )] ( x ) + b i ( x ) u i ( t ) i = 1 ⇔ modal controllability approximate controllability A − Riesz-spectral operator with e-pair { ( λ n , v n ) } n ∈ N e-functions of A † s.t. � w n , v m � = δ nm { w n } n ∈ N − ∞ � [ A f ] ( x ) = λ n v n ( x ) � w n , f � n = 1   � �� � w n , b 1 � � w n , b m � �� ⇔ · · · approximate controllability = 1 rank • Necessary condition for controllability ⋆ Number of controls ≥ maximal multiplicity of e-vectors of A

  10. Draft EE 8235: Lecture 16 10 Example (to be done in class) • Diffusion equation on L 2 [ − 1 , 1] with Dirichlet BCs ψ t ( x, t ) = ψ xx ( x, t ) + b ( x ) u ( t ) ψ ( x, 0) = ψ 0 ( x ) ψ ( ± 1 , t ) = 0 Diagonal coordinate form � nπ � 2 α n ( t ) = − α n ( t ) + � v n , b � u ( t ) , n ∈ N ˙ 2 � �� � b n ⇔ { b n � = 0 , for all n ∈ N } approximate/modal controllability

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend