numerical behavior of stationary and two step splitting
play

Numerical behavior of stationary and two-step splitting iteration - PowerPoint PPT Presentation

Numerical behavior of stationary and two-step splitting iteration methods Miro Rozlo zn k joint results with Zhong-zhi Bai and Pavel Jir anek Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic Numerical


  1. Numerical behavior of stationary and two-step splitting iteration methods Miro Rozloˇ zn´ ık joint results with Zhong-zhi Bai and Pavel Jir´ anek Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic Numerical Analysis and Scientific Computation with Applications (NASCA13), June 24-25-26, 2013, Universite du Littoral Cˆ ote d’Opale (ULCO), Calais, France

  2. Delay of convergence and maximum attainable accuracy

  3. Stationary iterative methods ◮ A x = b , A = M − N , G = M − 1 N , F = NM − 1 ◮ A: M x k +1 = N x k + b B: x k +1 = x k + M − 1 ( b − A x k ) ◮ Inexact solution of systems with M : every computed solution y of M y = z is interpreted as an exact solution of a system with perturbed data and relative perturbation bounded by parameter τ such that ( M + ∆ M ) y = z, � ∆ M� ≤ τ �M� , τk ( M ) ≪ 1 ◮ Higham, Knight 1993: M triangular, τ = O ( u )

  4. Accuracy of the computed approximate solution A: M x k +1 = N x k + b ≤ τ �M − 1 |� ( �M� + �N� ) � ˆ x k +1 − x � max i =0 ,...,k {� ˆ x i �} � x � 1 − �G� � x � � b − A ˆ x k +1 � x k +1 � ≤ τ �M� � I − F� max i =0 ,...,k {� ˆ x i �} � b � + �A�� ˆ �A� 1 − �F� � x � x k +1 = x k + M − 1 ( b − A x k ) B: �M − 1 � ( �M� + �N� ) � ˆ x k +1 − x � max i =0 ,...,k {� ˆ x i �} ≤ O ( u ) � x � 1 − �G� − 2 τ �M − 1 ��M� � x � � b − A ˆ x k +1 � x k +1 � ≤ O ( u ) �M� + �N� � I − F� max i =0 ,...,k {� ˆ x i �} � b � + �A�� ˆ �A� 1 − �F� − 2 τ �M − 1 ��M� � x � Higham, Knight 1993, Bai, R, 2012

  5. Numerical experiments: small model example A = tridiag(1 , 4 , 1) ∈ R 100 × 100 , b = A · ones(100 , 1) , κ ( A ) = � A � · � A − 1 � = 5 . 9990 · 0 . 4998 ≈ 2 . 9983 A = M − N , M = D − L, N = U

  6. 0 10 τ = 10 −2 −2 10 −4 10 τ = 10 −6 relative error norms −6 10 −8 10 τ = 10 −10 −10 10 −12 10 −14 10 τ = O(u) −16 10 0 5 10 15 20 25 30 35 40 45 50 iteration number k

  7. 0 10 τ = 10 −2 −2 10 −4 10 normwise backward error τ = 10 −6 −6 10 −8 10 τ = 10 −10 −10 10 −12 10 τ = O(u) −14 10 −16 10 0 5 10 15 20 25 30 35 40 45 50 iteration number k

  8. 0 10 −5 10 relative error norms τ = O(u), τ =10 −10 , τ =10 −6 , τ =10 −2 −10 10 −15 10 0 5 10 15 20 25 30 35 40 45 50 iteration number k

  9. 0 10 −2 10 −4 10 normwise backward errors −6 10 −8 10 τ = O(u), τ =10 −10 , τ =10 −6 , τ =10 −2 −10 10 −12 10 −14 10 −16 10 0 5 10 15 20 25 30 35 40 45 50 iteration number k

  10. Two-step splitting iteration methods M 1 x k +1 / 2 = N 1 x k + b, A = M 1 − N 1 M 2 x k +1 = N 2 x k +1 / 2 + b, A = M 2 − N 2 Numerous solution schemes: Hermitian/skew-Hermitian (HSS) splitting, modified Hermitian/skew-Hermitian (MHSS) splitting, normal Hermitian/skew-Hermitian (NSS) splitting, preconditioned variant of modified Hermitian/skew-Hermitian (PMHSS) splitting and other splittings, ... Bai, Golub, Ng 2003, 2007, 2008; Bai 2009 Bai, Benzi, Chen 2010, 2011; Bai, Benzi, Chen, Wang 2012 � ˆ x k +1 − x � τ 1 �M − 1 2 N 2 ��M − 1 1 � ( �M 1 � + �N 1 � ) + τ 2 �M − 1 � � 2 � ( �M 2 � + �N 2 � ) � � x � max i =0 , 1 / 2 ,...,k +1 / 2 {� ˆ x i �} � x �

  11. Two-step splitting iteration methods x k +1 / 2 = x k + M − 1 1 ( b − A x k ) x k +1 = x k +1 / 2 + M − 1 2 ( b − A x k +1 / 2 ) ⇔ x k +1 = x k + ( M − 1 + M − 1 − M − 1 2 AM − 1 1 )( b − A x k ) 1 2 = x k + ( I + M − 1 2 N 1 ) M − 1 1 ( b − A x k ) = x k + M − 1 2 ( I + N 2 M − 1 1 )( b − A x k ) � ˆ x k +1 − x � 1 ) � ( �M� + �N� )max i =0 ,...,k {� ˆ x i �} � O ( u ) �M − 1 2 ( I + N 2 M − 1 � x � � x �

  12. Numerical experiments: small model example A = tridiag(2 , 4 , 1) ∈ R 100 × 100 , b = A · ones(100 , 1) , κ ( A ) = � A � · � A − 1 � = 5 . 9990 · 0 . 4998 ≈ 2 . 9983 H = 1 S = 1 2( A + A T ) , 2( A − A T ) A = H + S , H = tridiag(3 2 , 4 , 3 2) , S = tridiag(1 2 , 0 , − 1 2)

  13. 0 10 −2 10 τ 1 = 10 −2 , τ 2 =10 −10 −4 10 τ 1 = 10 −6 , τ 2 =10 −10 relative error norms −6 10 −8 10 τ 1 = 10 −10 , τ 2 =10 −10 −10 10 τ 1 = O(u), τ 2 =10 −10 −12 10 −14 10 τ 1 =O(u), 10 −10 , 10 −6 , 10 −2 , τ 2 = 10 −10 −16 10 0 10 20 30 40 50 60 70 80 90 100 iteration number k

  14. 0 10 −2 10 τ 1 = 10 −10 , τ 2 =10 −2 −4 10 τ 1 = 10 −10 , τ 2 =10 −6 relative error norms −6 10 −8 10 τ 1 = 10 −10 , τ 2 =10 −10 −10 10 τ 1 = 10 −10 , τ 2 =O(u) −12 10 −14 10 τ 1 = 10 −10 , τ 2 =O(u), 10 −10 , 10 −6 , 10 −2 −16 10 0 10 20 30 40 50 60 70 80 90 100 iteration number k

  15. Saddle point problems We consider a saddle point problem with the symmetric 2 × 2 block form � A � � x � � f � B = . B T 0 y 0 ◮ A is a square n × n nonsingular (symmetric positive definite) matrix, ◮ B is a rectangular n × m matrix of (full column) rank m .

  16. Schur complement reduction method ◮ Compute y as a solution of the Schur complement system B T A − 1 By = B T A − 1 f, ◮ compute x as a solution of Ax = f − By. ◮ Segregated vs. coupled approach: x k and y k approximate solutions to x and y , respectively. ◮ Inexact solution of systems with A : every computed solution ˆ u of Au = b is interpreted as an exact solution of a perturbed system ( A + ∆ A )ˆ u = b + ∆ b, � ∆ A � ≤ τ � A � , � ∆ b � ≤ τ � b � , τκ ( A ) ≪ 1 .

  17. Iterative solution of the Schur complement system choose y 0 , solve Ax 0 = f − By 0    compute α k and p ( y )    k     y k +1 = y k + α k p ( y )   k     solve Ap ( x ) = − Bp ( y ) �    � k k    �    back-substitution:  outer �    �   �  iteration A: x k +1 = x k + α k p ( x )  k , inner �    �   iteration �  B: solve Ax k +1 = f − By k +1 ,  �     �     C: solve Au k = f − Ax k − By k +1 , �     �     �   x k +1 = x k + u k .   �     − α k B T p ( x ) r ( y ) k +1 = r ( y )   k k

  18. Accuracy in the saddle point system � f − Ax k − By k � ≤ O ( α 1 ) κ ( A ) 1 − τκ ( A ) ( � f � + � B � Y k ) , k � ≤ O ( α 2 ) κ ( A ) � − B T x k − r ( y ) 1 − τκ ( A ) � A − 1 �� B � ( � f � + � B � Y k ) , Y k ≡ max {� y i � | i = 0 , 1 , . . . , k } . Back-substitution scheme α 1 α 2 A : Generic update τ u x k +1 = x k + α k p ( x ) k B : Direct substitution τ τ � x k +1 = A − 1 ( f − By k +1 ) additional C : Corrected dir. subst. system with A u τ x k +1 = x k + A − 1 ( f − Ax k − By k +1 ) − B T A − 1 f + B T A − 1 By k = − B T x k − B T A − 1 ( f − Ax k − By k )

  19. Numerical experiments: a small model example A = tridiag(1 , 4 , 1) ∈ R 100 × 100 , B = rand(100 , 20) , f = rand(100 , 1) , κ ( A ) = � A � · � A − 1 � = 5 . 9990 · 0 . 4998 ≈ 2 . 9983 , κ ( B ) = � B � · � B † � = 7 . 1695 · 0 . 4603 ≈ 3 . 3001 . [R, Simoncini, 2002]

  20. Generic update: x k +1 = x k + α k p ( x ) k 0 0 10 10 τ = 10 −2 −2 10 −2 10 (y) || −4 (y) ||/||r 0 10 −4 10 τ = 10 −6 relative residual norms ||−B T x k ||/||−B T x 0 ||, ||r k −6 −6 10 residual norm ||f−Ax k −By k || 10 −8 −8 10 10 τ = 10 −10 −10 10 −10 10 −12 10 −12 10 τ = O(u) −14 −14 10 10 τ = O(u), τ = 10 −10 , τ =10 −6 , τ =10 −2 −16 −16 10 10 −18 −18 10 10 0 50 100 150 200 250 300 0 50 100 150 200 250 300 iteration number k iteration number k

  21. Direct substitution: x k +1 = A − 1 ( f − By k +1 ) 0 0 10 10 τ = 10 −2 −2 τ = 10 −2 10 −2 10 (y) || −4 (y) ||/||r 0 10 −4 10 τ = 10 −6 relative residual norms ||−B T x k ||/||−B T x 0 ||, ||r k τ = 10 −6 −6 −6 10 residual norm ||f−Ax k −By k || 10 −8 −8 10 10 τ = 10 −10 τ = 10 −10 −10 10 −10 10 −12 10 −12 10 τ = O(u) −14 −14 10 10 τ = O(u) −16 −16 10 10 −18 −18 10 10 0 50 100 150 200 250 300 0 50 100 150 200 250 300 iteration number k iteration number k

  22. Corrected direct substitution: x k +1 = x k + A − 1 ( f − Ax k − By k +1 ) 0 0 10 10 −2 τ = 10 −2 10 −2 10 (y) || −4 (y) ||/||r 0 10 −4 10 relative residual norms ||−B T x k ||/||−B T x 0 ||, ||r k τ = 10 −6 −6 −6 10 residual norm ||f−Ax k −By k || 10 −8 −8 10 10 τ = 10 −10 −10 10 −10 10 −12 10 −12 10 −14 −14 10 10 τ = O(u), τ = 10 −10 , τ =10 −6 , τ =10 −2 τ = O(u) −16 −16 10 10 −18 −18 10 10 0 50 100 150 200 250 300 0 50 100 150 200 250 300 iteration number k iteration number k

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend