nonlinear multivariable flight control
play

Nonlinear multivariable flight control Ola Hrkegrd Linkpings - PDF document

Nonlinear multivariable flight control Ola Hrkegrd Linkpings Tekniska Hgskola Ola Hrkegrd Nonlinear multivariable flight control Lund 2003-11-13 Background Nonlinear Multivariable Different flight cases 6 DOF High


  1. Nonlinear multivariable flight control Ola Härkegård Linköpings Tekniska Högskola Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Background Nonlinear Multivariable Different flight cases 6 DOF � � High angle-of-attack Control surface redundancy � � Rigid body dynamics Unconventional control surfaces � � Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 1

  2. High angle of attack Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Unconventional control surfaces vs. Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 2

  3. Outline � Aircraft � Backstepping � Control allocation Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Outline � Aircraft Why fly-by-wire? Why fly-by-wire? � � Control objectives Control objectives � � Actuators Actuators � Backstepping � � � Control allocation Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 3

  4. Why fly-by-wire? control stick surf. Control system sensors visual info, cockpit displays, etc. Stabilize aircraft � Handling qualities � Advanced control surfaces � Autopilot functionality � Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Control objectives � Longitudinal control n z q α V � Pitch rate � Load factor � Angle of attack Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 4

  5. Control objectives � Lateral control β V p � Sideslip angle � Roll rate Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Actuators (TVC) Canards Elevons Rudder Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 5

  6. System overview � Inner control loop: r u α , β , p Flight Flight control sys. control sys. x � Modular control design: M u M Control Control Control Control Aircraft Aircraft Actuators Actuators laws laws allocation allocation dynamics dynamics Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Outline � Aircraft � Backstepping What is backstepping? What is backstepping? � � Why use it? Why use it? � � Research at LiTH Research at LiTH � Control allocation � � Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 6

  7. What is backstepping? � Constructive nonlinear control design method. � Model structure: ( ) x f x , x = � Same requirement as 1 1 1 2 ( ) in feedback linearization x f x , x , x = � 2 2 1 2 3 � ( ) x = f x , x , x , , x , u � � n n 1 2 3 n Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Why use backstepping? � Can benefit from “useful” nonlinearities May require less � control effort � modeling information → robustness � Can achieve GAS when feedback linearization fails Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 7

  8. Design procedure ( ) x = f x , x � 1 1 1 2 ( ) x = f x , x , x � 2 2 1 2 3 � ( ) x f x , x , x , , x , u = � � n n 1 2 3 n 2 V = x decreases if 1 1 ( ) x x des x = 2 2 1 Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Step backwards ( ) x f x , x = � 1 1 1 2 ( ) x = f x , x , x � 2 2 1 2 3 � ( ) x f x , x , x , , x , u = � � n n 1 2 3 n ( ) 2 V V x x des = + − decreases if 2 1 2 2 ( ) x x des x , x = 3 3 1 2 Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 8

  9. Step backwards ( ) x = f x , x � 1 1 1 2 ( ) x = f x , x , x � 2 2 1 2 3 � ( ) x = f x , x , x , , x , u � � n n 1 2 3 n ( ) 2 V V x x des = + − decreases if n n − 1 n n ( ) u k x , x , x , , x = � 1 2 3 n Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Research at LiTH � Are there useful nonlinearities in the aircraft dynamics? � Well, at least harmless. � Can backstepping be applied to multivariable flight control? � Yes, applicable to general rigid body dynamics. Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 9

  10. Sideslip regulation r Sideforce Y( β ) β V 4 2 x 10 1.5 1 ( ( ) ) r � Y F sin β = β − β − 1 T mV 0.5 Y (N) 0 N 1 -0.5 ( ) r N , r , u = β � -1 J -1.5 z -2 -20 -10 0 10 20 beta (deg) F T Linear Linear � � Backstepping N = – k 1 β – k 2 r Independent of Y( β ) Independent of Y( β ) � � Inverse optimal Inverse optimal � � Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Outline � Aircraft � Backstepping � Control allocation What is control allocation? What is control allocation? � � Why use it? Why use it? � � Research at LiTH Research at LiTH � � Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 10

  11. What is control allocation? How should the total control effort be How should the total control effort be distributed among the actuators? distributed among the actuators? Control design: • Determine desired total control effort • Distribute the control effort among the actuators Control Control Control Control System System Actuators Actuators laws laws allocation allocation dynamics dynamics Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Applications Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 11

  12. Why use control allocation? � Easy to reconfigure � Cheap way to handle actuator limits � ”Poor man’s MPC” � Necessary for certain control design methods � Feedback linearization (NDI) � Backstepping � Modularity Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Example: Hardover Max deflection after 1 s Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 12

  13. Mathematical formulation u v Actuators Actuators u = true control signal � v = virtual control signal (total control effort) � Model: v = g(u) � Linearization: v = Bu � u ≤ u ≤ u Constraints:  min max ( ) ( ) � u t ≤ u ≤ u t  u ≤ u ≤ u � � �  min max Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Example x = − v  � x = − 2 u − u ⇔ Dynamics: �  1 2 v = 2 u + u  1 2 0 ≤ u ≤ 1 Constraints: 1 0 ≤ u ≤ 2 2 v = 3 v = 4 v = 5 u 2 Control law: v = x 2 Allocation problem: 2 u u v + = 1 2 u 1 1 Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 13

  14. Optimization based control allocation Minimize cost function. 2 u u v + = u 0 = 1 2 d 0 u 1 ≤ ≤ W = I 1 u Bu v = 0 ≤ u ≤ 2 W 1 = 2 v u ≤ u ≤ u v = 3 . 5 u Ω 1   2 u =   ( ) 2   • Ω = arg min W Bu − v 1 . 5 2   v u ≤ u ≤ u • ( ) 2 • u = arg min W u − u u d u ∈ Ω u • u 1 d 1 Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Research at LiTH � Can standard QP methods be used for control allocation in real time? � Yes. � How can filtering be included in the allocation? � Also penalize changes in the control signal. � How is control allocation related to LQ control? � Equivalent without constraints. Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 14

  15. Dynamic control allocation � What? Bu v = G(s) v u Constraints: G(s) u ≤ u ≤ u � Why? � Actuator dynamics � ”Practical aspects” Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Dynamic control allocation � How? Also penalize changes in the control signal. ( ) ( ( ) ( ) ) 2 2 min W u t W u t u t T + − − ( ) ( ) ( ) 1 2 ⇒ u t Fu t T Gv t ( ) 2 = − + 2 u t Bu = v Stable linear filter Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 15

  16. Example: Flight control 100 —Canards Control effort distribution —Elevons 10-1 —TVC 10-2 10-3 10-4 -2 10-1 0 1 102 10 10 10 Frequency (rad/sec) Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Control allocation vs LQ control v r LQ CA u r LQ u LQ CA LQ x x B u = B B v x = Ax + B u x = Ax + B v � � u v v Bu = ∞ u ∫ min x T Q x u T R u d t + 1 1 ∞ 0 v ∫ v = − L x min x T Q x + v T R v d t 2 2 2 u = − L x 0 1 u L v min Wu då Bu = v = 3 2 u u = − L L x Q 1 R , 3 2 1 Q , R , W 2 2 Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 16

  17. Example δ δ � Admire (FOI) c re � Mach 0.22, 3000 m � x = ( α β p q r) δ r δ le � Approximations: � Ignore actuator dynamics � View control surfaces as moment generators x Ax B v � Model (for control): = + � v v B = δ angular acc. control surfaces Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 Simulation results LQ LQ+CA with constraints Ola Härkegård Nonlinear multivariable flight control Lund 2003-11-13 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend