nodal finite volumes for hyperbolic systems with source
play

Nodal finite volumes for hyperbolic systems with source terms on - PowerPoint PPT Presentation

Nodal finite volumes for hyperbolic systems with source terms on unstructured meshes E. Franck 1 , C. Buet 2 , B. Despr es 3 T.Leroy 2 , 3 , L. Mendoza 4 July 31, 2015 1 INRIA Nancy Grand-Est and IRMA Strasbourg, TONUS team, France 2 CEA DAM,


  1. Nodal finite volumes for hyperbolic systems with source terms on unstructured meshes E. Franck 1 , C. Buet 2 , B. Despr´ es 3 T.Leroy 2 , 3 , L. Mendoza 4 July 31, 2015 1 INRIA Nancy Grand-Est and IRMA Strasbourg, TONUS team, France 2 CEA DAM, Arpajon, France 3 LJLL, UPMC, France 4 IPP, Garching bei M¨ unchen, Germany 1 / 33 E. Franck FV nodal schemes 1/33

  2. Outline Mathematical and physical context AP scheme for the P 1 model Extension to the Euler model 2 / 33 E. Franck FV nodal schemes 2/33

  3. Mathematic and physical context 3 / 33 E. Franck FV nodal schemes 3/33

  4. Stiff hyperbolic systems � Stiff hyperbolic system with source terms : ∂ t U + 1 ε ∂ x F ( U ) + 1 ε ∂ y G ( U ) = 1 ε S ( U ) − σ ε 2 R ( U ) , U ∈ R n with ε ∈ ] 0, 1 ] et σ > 0. � Subset of solutions given by the balance between the source terms and the convective part: � Diffusion solutions for ε → 0 and S ( U ) = 0: ∂ t V − div ( K ( ∇ V , σ )) = 0, V ∈ Ker R . � Steady states for σ = 0 et ε → 0 : ∂ x F ( U ) + ∂ y G ( U ) = S ( U ) . � Applications: biology, neutron transport, fluid mechanics, plasma physics, Radiative hydrodynamic for inertial fusion (hydrodynamic + linear transport of photon). 4 / 33 E. Franck FV nodal schemes 4/33

  5. Well-Balanced schemes � Discretization of physical steady states is important (Lack at rest for Shallow water equations, hydrostatic equilibrium for astrophysical flows ..) � Classical scheme : the physical steady states or a good discretization of the steady states are not the equilibriums of the scheme. � Consequence : Spurious numerical velocities larger than physical velocities for nearly or exact uniform flows. WB scheme: definitions � Exact Well-Balanced scheme : is a scheme exact for continuous steady-states. � Well-Balanced scheme : is a scheme exact for discrete steady-states at the interfaces. � For shallow water model : in general the schemes are exact WB schemes. � For Euler model : in general the schemes are WB schemes. 5 / 33 E. Franck FV nodal schemes 5/33

  6. Sch´ emas ”Asymptotic preserving” � P 1 model:  ∂ t E + 1  � 1 �  ε ∂ x F = 0, − → ∂ t E − ∂ x σ ∂ x E = 0. ∂ t F + 1 ε ∂ x E = − σ   ε 2 F , � Consistency of Godunov-type ε → 0 P ε P 0 schemes: O ( ∆ x h h ε + ∆ t ) . � CFL condition: ∆ t ( 1 ∆ x ε + σ ε 2 ) ≤ 1. h → 0 h → 0 � Consistency of AP schemes: O ( ∆ x + ∆ t ) . P ε P 0 � CFL condition: � � ε → 0 1 ∆ t ≤ 1. ∆ x ε + ∆ x 2 Figure: AP diagram σ � AP vs non AP schemes: Important reduction of CPU cost. � AP schemes are obtained plugging the source term into the fluxes (WB technic). 6 / 33 E. Franck FV nodal schemes 6/33

  7. AP Godunov schemes � Jin-Levermore scheme � Principle : plug the balance law ∂ x E = − σ ε F + O ( ε 2 ) in the fluxes. 7 / 33 E. Franck FV nodal schemes 7/33

  8. AP Godunov schemes � Jin-Levermore scheme � Principle : plug the balance law ∂ x E = − σ ε F + O ( ε 2 ) in the fluxes. we write the relations � E ( x j ) = E ( x j + 1 2 ) + ( x j − x j + 1 2 ) ∂ x E ( x j + 1 2 ) , E ( x j + 1 ) = E ( x j + 1 2 ) + ( x j + 1 − x j + 1 2 ) ∂ x E ( x j + 1 2 ) . 7 / 33 E. Franck FV nodal schemes 7/33

  9. AP Godunov schemes � Jin-Levermore scheme � Principle : plug the balance law ∂ x E = − σ ε F + O ( ε 2 ) in the fluxes. we write the relations � 2 ) σ E ( x j ) = E ( x j + 1 2 ) − ( x j − x j + 1 ε F ( x j + 1 2 ) , 2 ) σ E ( x j + 1 ) = E ( x j + 1 2 ) − ( x j + 1 − x j + 1 ε F ( x j + 1 2 ) . 7 / 33 E. Franck FV nodal schemes 7/33

  10. AP Godunov schemes � Jin-Levermore scheme � Principle : plug the balance law ∂ x E = − σ ε F + O ( ε 2 ) in the fluxes. we write the relations � 2 ) σ E ( x j ) = E ( x j + 1 2 ) − ( x j − x j + 1 ε F ( x j + 1 2 ) , 2 ) σ E ( x j + 1 ) = E ( x j + 1 2 ) − ( x j + 1 − x j + 1 ε F ( x j + 1 2 ) . We couple these relations with the fluxes � F j + E j = F j + 1 2 + E j + 1 2 , F j + 1 − E j + 1 = F j + 1 2 − E j + 1 2 . 7 / 33 E. Franck FV nodal schemes 7/33

  11. AP Godunov schemes � Jin-Levermore scheme � Principle : plug the balance law ∂ x E = − σ ε F + O ( ε 2 ) in the fluxes. we write the relations � 2 ) σ E ( x j ) = E ( x j + 1 2 ) − ( x j − x j + 1 ε F ( x j + 1 2 ) , 2 ) σ E ( x j + 1 ) = E ( x j + 1 2 ) − ( x j + 1 − x j + 1 ε F ( x j + 1 2 ) . � 2 + σ ∆ x F j + E j = F j + 1 2 + E j + 1 2 ε F j + 1 2 , 2 + σ ∆ x F j + 1 − E j + 1 = F j + 1 2 − E j + 1 2 . 2 ε F j + 1 7 / 33 E. Franck FV nodal schemes 7/33

  12. AP Godunov schemes � Jin-Levermore scheme � Principle : plug the balance law ∂ x E = − σ ε F + O ( ε 2 ) in the fluxes. Jin Levermore scheme:  E n + 1 − E n F n j + 1 − F n E n j + 1 − 2 E n j + E n  j − 1 j − 1 j j + M − M = 0, ∆ t 2 ε ∆ x 2 ε ∆ x F n + 1 − F n E n j + 1 − E n F n j + 1 − 2 F n j + F n  j j j − 1 j − 1 + σ ε 2 F n + − j = 0, ∆ t 2 ε ∆ x 2 ε ∆ x 2 ε with M = 2 ε + σ ∆ x . 7 / 33 E. Franck FV nodal schemes 7/33

  13. AP Godunov schemes � Jin-Levermore scheme � Principle : plug the balance law ∂ x E = − σ ε F + O ( ε 2 ) in the fluxes. Gosse-Toscani scheme:  E n + 1 − E n F n j + 1 − F n E n j + 1 − 2 E n j + E n  j − 1 j − 1 j j + M − M = 0, ∆ t 2 ε ∆ x 2 ε ∆ x F n + 1 − F n E n j + 1 − E n F n j + 1 − 2 F n j + F n  j j j − 1 j − 1 + M σ ε 2 F n + M − M j = 0, ∆ t 2 ε ∆ x 2 ε ∆ x 2 ε avec M = 2 ε + σ ∆ x . � consistency error for the � Principle of GT scheme : JL-scheme with the source term Jin-Levermore scheme: 1 2 ( F j + 1 2 + F j − 1 2 ) gives the � first equation: � � ∆ x 2 + ε ∆ x + ∆ t Gosse-Toscani scheme. O , � second equation: � Consistency error of the � � ∆ x 2 Gosse-Toscani scheme: O + ∆ x + ∆ t . ε O ( ∆ x + ∆ t ) . � � 1 � 1 � ≤ 1. � Explicit CFL: ∆ t ∆ x ε + σ ≤ 1. ε 2 � Explicit CFL: ∆ t ∆ x ε � 1 � ≤ 1. � Semi-implicit CFL: ∆ t � Semi-implicit CFL : ∆ x ε � � 1 ∆ t ≤ 1. ∆ x ε + ∆ x 2 7 / 33 E. Franck FV nodal schemes 7/33

  14. Numerical example � Validation test for AP scheme : the data are E ( 0, x ) = G ( x ) with G ( x ) a Gaussian F ( 0, x ) = 0 and σ = 1, ε = 0.001. Ap scheme Godunov scheme L 1 error Scheme CPU time Godunov, 10000 cells 0.0366 1485m4.26s Godunov, 500 cells 0.445 0m24.317s AP, 500 cells 0.0001 0m15.22s AP, 50 cells 0.0065 0m0.054s 8 / 33 E. Franck FV nodal schemes 8/33

  15. Non complete state of art � S. Jin, D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms , (1996). � C. Berthon, R. Turpault, Asymptotic preserving HLL schemes , (2012). � L. Gosse, G. Toscani, An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations , (2002). � C. Berthon, P. Charrier and B. Dubroca, An HLLC scheme to solve the M 1 model of radiative transfer in two space dimensions , (2007). � C. Chalons, M. Girardin, S. Kokh, Large time step asymptotic preserving numerical schemes for the gas dynamics equations with source terms , (2013). � C. Chalons, F. Coquel, E. Godlewski, P-A. Raviart, N. Seguin, Godunov-type schemes for hyperbolic systems with parameter dependent source , (2010). � R. Natalini and M. Ribot, An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis , (2012). � M. Zenk, C. Berthon et C. Klingenberg, A well-balanced scheme for the Euler equations with a gravitational potential , (2014). � J. Greenberg, A. Y. Leroux, A well balanced scheme for the numerical processing of source terms in hyperbolic equations , (1996). � R. Kappeli, S. Mishra, Well-balanced schemes for the Euler equations with gravitation , (2013). 9 / 33 E. Franck FV nodal schemes 9/33

  16. Why unstructured meshes ? � Applications : coupling between radiation and hydrodynamic 1 1 � In some hydrodynamic codes : Lagrangian or ALE scheme cell-centered for multi-material problems. � Example of meshes obtained using a ALE code. � Aim : Design and analyze AP cell-centered for linear transport on general meshes. 0 0 −1.5×10 −18 −1.5×10 −18 1.0×10 0 1.0×10 0 10 / 33 E. Franck FV nodal schemes 10/33

  17. Sch´ emas ”Asymptotic preserving” 2D � Classical extension in 2D of the Jin-Levermore scheme : modify the upwind fluxes (1D fluxes write in the normal direction) plugging the steady states in the fluxes. x r Cell Ω k x r + 1 x k l jk n jk x j Cell Ω j x r − 1 � l jk and n jk the normal and length associated with the edge ∂ Ω jk . Asymptotic limit of the scheme: E n k − E n | Ω j | ∂ t E j ( t ) − 1 j σ ∑ d ( x j , x k ) = 0. l jk k � || P 0 h − P h || → 0 only on strong geometrical conditions. � These AP schemes do not converge on 2D general meshes ∀ ε . 11 / 33 E. Franck FV nodal schemes 11/33

  18. Example of unstructured meshes Random mesh Collela mesh 2 2 1.5 1.5 1 1 0.5 0.5 0 0 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Random triangular mesh Kershaw mesh 12 / 33 E. Franck FV nodal schemes 12/33

  19. AP scheme for the P 1 model 13 / 33 E. Franck FV nodal schemes 13/33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend